ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frn GIF version

Theorem frn 5416
Description: The range of a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frn (𝐹:𝐴𝐵 → ran 𝐹𝐵)

Proof of Theorem frn
StepHypRef Expression
1 df-f 5262 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
21simprbi 275 1 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3157  ran crn 4664   Fn wfn 5253  wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5262
This theorem is referenced by:  frnd  5417  fco2  5424  fssxp  5425  fimacnvdisj  5442  f00  5449  f0rn0  5452  f1rn  5464  f1ff1  5471  fimacnv  5691  ffvelcdm  5695  f1ompt  5713  fnfvrnss  5722  rnmptss  5723  fliftrel  5839  fo1stresm  6219  fo2ndresm  6220  1stcof  6221  2ndcof  6222  fo2ndf  6285  tposf2  6326  iunon  6342  smores2  6352  map0b  6746  mapsn  6749  f1imaen2g  6852  phplem4dom  6923  isinfinf  6958  updjudhcoinlf  7146  updjudhcoinrg  7147  casef  7154  unirnioo  10048  frecuzrdgdomlem  10509  frecuzrdgfunlem  10511  frecuzrdgtclt  10513  ennnfonelemrn  12636  ctinf  12647  txuni2  14492  blin2  14668  tgqioo  14791  reeff1o  15009
  Copyright terms: Public domain W3C validator