![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frn | GIF version |
Description: The range of a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
frn | ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5259 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3154 ran crn 4661 Fn wfn 5250 ⟶wf 5251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-f 5259 |
This theorem is referenced by: frnd 5414 fco2 5421 fssxp 5422 fimacnvdisj 5439 f00 5446 f0rn0 5449 f1rn 5461 f1ff1 5468 fimacnv 5688 ffvelcdm 5692 f1ompt 5710 fnfvrnss 5719 rnmptss 5720 fliftrel 5836 fo1stresm 6216 fo2ndresm 6217 1stcof 6218 2ndcof 6219 fo2ndf 6282 tposf2 6323 iunon 6339 smores2 6349 map0b 6743 mapsn 6746 f1imaen2g 6849 phplem4dom 6920 isinfinf 6955 updjudhcoinlf 7141 updjudhcoinrg 7142 casef 7149 unirnioo 10042 frecuzrdgdomlem 10491 frecuzrdgfunlem 10493 frecuzrdgtclt 10495 ennnfonelemrn 12579 ctinf 12590 txuni2 14435 blin2 14611 tgqioo 14734 reeff1o 14949 |
Copyright terms: Public domain | W3C validator |