| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frn | GIF version | ||
| Description: The range of a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frn | ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5263 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3157 ran crn 4665 Fn wfn 5254 ⟶wf 5255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-f 5263 |
| This theorem is referenced by: frnd 5420 fco2 5427 fssxp 5428 fimacnvdisj 5445 f00 5452 f0rn0 5455 f1rn 5467 f1ff1 5474 fimacnv 5694 ffvelcdm 5698 f1ompt 5716 fnfvrnss 5725 rnmptss 5726 fliftrel 5842 fo1stresm 6228 fo2ndresm 6229 1stcof 6230 2ndcof 6231 fo2ndf 6294 tposf2 6335 iunon 6351 smores2 6361 map0b 6755 mapsn 6758 f1imaen2g 6861 phplem4dom 6932 isinfinf 6967 updjudhcoinlf 7155 updjudhcoinrg 7156 casef 7163 unirnioo 10067 frecuzrdgdomlem 10528 frecuzrdgfunlem 10530 frecuzrdgtclt 10532 ennnfonelemrn 12663 ctinf 12674 txuni2 14600 blin2 14776 tgqioo 14899 reeff1o 15117 |
| Copyright terms: Public domain | W3C validator |