| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frn | GIF version | ||
| Description: The range of a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frn | ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5294 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3174 ran crn 4694 Fn wfn 5285 ⟶wf 5286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-f 5294 |
| This theorem is referenced by: frnd 5455 fco2 5462 fssxp 5463 fimacnvdisj 5482 f00 5489 f0rn0 5492 f1rn 5504 f1ff1 5511 fimacnv 5732 ffvelcdm 5736 f1ompt 5754 fnfvrnss 5763 rnmptss 5764 fliftrel 5884 fo1stresm 6270 fo2ndresm 6271 1stcof 6272 2ndcof 6273 fo2ndf 6336 tposf2 6377 iunon 6393 smores2 6403 map0b 6797 mapsn 6800 f1imaen2g 6908 phplem4dom 6984 isinfinf 7020 updjudhcoinlf 7208 updjudhcoinrg 7209 casef 7216 unirnioo 10130 frecuzrdgdomlem 10599 frecuzrdgfunlem 10601 frecuzrdgtclt 10603 ennnfonelemrn 12905 ctinf 12916 txuni2 14843 blin2 15019 tgqioo 15142 reeff1o 15360 |
| Copyright terms: Public domain | W3C validator |