| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > frn | GIF version | ||
| Description: The range of a mapping. (Contributed by NM, 3-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| frn | ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f 5262 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ⊆ wss 3157 ran crn 4664 Fn wfn 5253 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-f 5262 | 
| This theorem is referenced by: frnd 5417 fco2 5424 fssxp 5425 fimacnvdisj 5442 f00 5449 f0rn0 5452 f1rn 5464 f1ff1 5471 fimacnv 5691 ffvelcdm 5695 f1ompt 5713 fnfvrnss 5722 rnmptss 5723 fliftrel 5839 fo1stresm 6219 fo2ndresm 6220 1stcof 6221 2ndcof 6222 fo2ndf 6285 tposf2 6326 iunon 6342 smores2 6352 map0b 6746 mapsn 6749 f1imaen2g 6852 phplem4dom 6923 isinfinf 6958 updjudhcoinlf 7146 updjudhcoinrg 7147 casef 7154 unirnioo 10048 frecuzrdgdomlem 10509 frecuzrdgfunlem 10511 frecuzrdgtclt 10513 ennnfonelemrn 12636 ctinf 12647 txuni2 14492 blin2 14668 tgqioo 14791 reeff1o 15009 | 
| Copyright terms: Public domain | W3C validator |