ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frn GIF version

Theorem frn 5434
Description: The range of a mapping. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
frn (𝐹:𝐴𝐵 → ran 𝐹𝐵)

Proof of Theorem frn
StepHypRef Expression
1 df-f 5275 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
21simprbi 275 1 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3166  ran crn 4676   Fn wfn 5266  wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5275
This theorem is referenced by:  frnd  5435  fco2  5442  fssxp  5443  fimacnvdisj  5460  f00  5467  f0rn0  5470  f1rn  5482  f1ff1  5489  fimacnv  5709  ffvelcdm  5713  f1ompt  5731  fnfvrnss  5740  rnmptss  5741  fliftrel  5861  fo1stresm  6247  fo2ndresm  6248  1stcof  6249  2ndcof  6250  fo2ndf  6313  tposf2  6354  iunon  6370  smores2  6380  map0b  6774  mapsn  6777  f1imaen2g  6885  phplem4dom  6959  isinfinf  6994  updjudhcoinlf  7182  updjudhcoinrg  7183  casef  7190  unirnioo  10095  frecuzrdgdomlem  10562  frecuzrdgfunlem  10564  frecuzrdgtclt  10566  ennnfonelemrn  12790  ctinf  12801  txuni2  14728  blin2  14904  tgqioo  15027  reeff1o  15245
  Copyright terms: Public domain W3C validator