| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frn | GIF version | ||
| Description: The range of a mapping. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| frn | ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5275 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3166 ran crn 4676 Fn wfn 5266 ⟶wf 5267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-f 5275 |
| This theorem is referenced by: frnd 5435 fco2 5442 fssxp 5443 fimacnvdisj 5460 f00 5467 f0rn0 5470 f1rn 5482 f1ff1 5489 fimacnv 5709 ffvelcdm 5713 f1ompt 5731 fnfvrnss 5740 rnmptss 5741 fliftrel 5861 fo1stresm 6247 fo2ndresm 6248 1stcof 6249 2ndcof 6250 fo2ndf 6313 tposf2 6354 iunon 6370 smores2 6380 map0b 6774 mapsn 6777 f1imaen2g 6885 phplem4dom 6959 isinfinf 6994 updjudhcoinlf 7182 updjudhcoinrg 7183 casef 7190 unirnioo 10095 frecuzrdgdomlem 10562 frecuzrdgfunlem 10564 frecuzrdgtclt 10566 ennnfonelemrn 12790 ctinf 12801 txuni2 14728 blin2 14904 tgqioo 15027 reeff1o 15245 |
| Copyright terms: Public domain | W3C validator |