![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmiddc | GIF version |
Description: Law of excluded middle, for a decidable proposition. The law of the excluded middle is also called the principle of tertium non datur. Theorem *2.11 of [WhiteheadRussell] p. 101. It says that something is either true or not true; there are no in-between values of truth. The key way in which intuitionistic logic differs from classical logic is that intuitionistic logic says that excluded middle only holds for some propositions, and classical logic says that it holds for all propositions. (Contributed by Jim Kingdon, 12-May-2018.) |
Ref | Expression |
---|---|
exmiddc | ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dc 784 | . 2 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
2 | 1 | biimpi 119 | 1 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 667 DECID wdc 783 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-dc 784 |
This theorem is referenced by: stabtestimpdc 865 modc 1998 rabxmdc 3333 dcun 3412 ifsbdc 3425 ifcldadc 3440 ifeq1dadc 3441 ifbothdadc 3442 ifbothdc 3443 ifiddc 3444 eqifdc 3445 exmidn0m 4054 exmidundif 4058 exmidundifim 4059 dcextest 4424 dcdifsnid 6303 fidceq 6665 fidifsnen 6666 fimax2gtrilemstep 6696 finexdc 6698 unfiexmid 6708 unsnfidcex 6710 unsnfidcel 6711 undifdcss 6713 ssfirab 6723 fidcenumlemrks 6742 exmidomniim 6884 nnnninf 6894 exmidfodomrlemim 6924 xaddcom 9427 xnegdi 9434 xpncan 9437 xleadd1a 9439 xsubge0 9447 exfzdc 9800 flqeqceilz 9874 modifeq2int 9942 modfzo0difsn 9951 modsumfzodifsn 9952 iseqf1olemab 10039 iseqf1olemmo 10042 seq3f1olemstep 10051 fser0const 10066 bcval 10272 bccmpl 10277 bcval5 10286 bcpasc 10289 bccl 10290 hashfzp1 10347 2zsupmax 10772 xrmaxifle 10789 xrmaxiflemab 10790 xrmaxiflemlub 10791 xrmaxiflemcom 10792 sumdc 10901 sumrbdclem 10919 fsum3cvg 10920 summodclem2a 10924 zsumdc 10927 isumss 10934 fisumss 10935 isumss2 10936 fsumadd 10949 sumsplitdc 10975 fsummulc2 10991 dvdsabseq 11275 zsupcllemstep 11368 infssuzex 11372 gcdval 11378 gcddvds 11382 gcdcl 11385 gcd0id 11397 gcdneg 11400 gcdaddm 11402 dfgcd3 11426 dfgcd2 11430 gcdmultiplez 11437 dvdssq 11447 dvdslcm 11478 lcmcl 11481 lcmneg 11483 lcmgcd 11487 lcmdvds 11488 lcmid 11489 mulgcddvds 11503 cncongr2 11513 prmind2 11529 rpexp 11559 pw2dvdslemn 11570 unennn 11637 sumdc2 12407 nnsf 12600 nninfsellemsuc 12609 |
Copyright terms: Public domain | W3C validator |