| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifptru | GIF version | ||
| Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 3607. This is essentially dedlema 975. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
| Ref | Expression |
|---|---|
| ifptru | ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp 984 | . . 3 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 2 | ancom 266 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 3 | ancom 266 | . . . 4 ⊢ ((¬ 𝜑 ∧ 𝜒) ↔ (𝜒 ∧ ¬ 𝜑)) | |
| 4 | 2, 3 | orbi12i 769 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) |
| 5 | 1, 4 | bitri 184 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑))) |
| 6 | dedlema 975 | . 2 ⊢ (𝜑 → (𝜓 ↔ ((𝜓 ∧ 𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))) | |
| 7 | 5, 6 | bitr4id 199 | 1 ⊢ (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 if-wif 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-ifp 984 |
| This theorem is referenced by: ifpiddc 997 |
| Copyright terms: Public domain | W3C validator |