ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifptru GIF version

Theorem ifptru 995
Description: Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 3607. This is essentially dedlema 975. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.)
Assertion
Ref Expression
ifptru (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓))

Proof of Theorem ifptru
StepHypRef Expression
1 df-ifp 984 . . 3 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
2 ancom 266 . . . 4 ((𝜑𝜓) ↔ (𝜓𝜑))
3 ancom 266 . . . 4 ((¬ 𝜑𝜒) ↔ (𝜒 ∧ ¬ 𝜑))
42, 3orbi12i 769 . . 3 (((𝜑𝜓) ∨ (¬ 𝜑𝜒)) ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))
51, 4bitri 184 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑)))
6 dedlema 975 . 2 (𝜑 → (𝜓 ↔ ((𝜓𝜑) ∨ (𝜒 ∧ ¬ 𝜑))))
75, 6bitr4id 199 1 (𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by:  ifpiddc  997
  Copyright terms: Public domain W3C validator