| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifiddc | GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifiddc | ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 837 | . 2 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | iftrue 3566 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | iffalse 3569 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 4 | 2, 3 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → if(𝜑, 𝐴, 𝐴) = 𝐴) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ifcif 3561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 |
| This theorem is referenced by: xaddpnf1 9921 xaddmnf1 9923 isumz 11554 prod1dc 11751 1arithlem4 12535 xpscf 12990 lgsval2lem 15251 lgsdilem2 15277 |
| Copyright terms: Public domain | W3C validator |