ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifiddc GIF version

Theorem ifiddc 3618
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifiddc (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)

Proof of Theorem ifiddc
StepHypRef Expression
1 exmiddc 840 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3587 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
3 iffalse 3590 . . 3 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
42, 3jaoi 720 . 2 ((𝜑 ∨ ¬ 𝜑) → if(𝜑, 𝐴, 𝐴) = 𝐴)
51, 4syl 14 1 (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 712  DECID wdc 838   = wceq 1375  ifcif 3582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-dc 839  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-if 3583
This theorem is referenced by:  xaddpnf1  10010  xaddmnf1  10012  isumz  11866  prod1dc  12063  1arithlem4  12855  xpscf  13346  lgsval2lem  15654  lgsdilem2  15680
  Copyright terms: Public domain W3C validator