| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifiddc | GIF version | ||
| Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifiddc | ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 841 | . 2 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
| 2 | iftrue 3607 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 3 | iffalse 3610 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
| 4 | 2, 3 | jaoi 721 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → if(𝜑, 𝐴, 𝐴) = 𝐴) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 DECID wdc 839 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: xaddpnf1 10050 xaddmnf1 10052 isumz 11908 prod1dc 12105 1arithlem4 12897 xpscf 13388 lgsval2lem 15697 lgsdilem2 15723 |
| Copyright terms: Public domain | W3C validator |