![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifiddc | GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifiddc | ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmiddc 836 | . 2 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
2 | iftrue 3540 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | iffalse 3543 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
4 | 2, 3 | jaoi 716 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → if(𝜑, 𝐴, 𝐴) = 𝐴) |
5 | 1, 4 | syl 14 | 1 ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 708 DECID wdc 834 = wceq 1353 ifcif 3535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-if 3536 |
This theorem is referenced by: xaddpnf1 9846 xaddmnf1 9848 isumz 11397 prod1dc 11594 1arithlem4 12364 xpscf 12766 lgsval2lem 14414 lgsdilem2 14440 |
Copyright terms: Public domain | W3C validator |