ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifiddc GIF version

Theorem ifiddc 3569
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifiddc (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)

Proof of Theorem ifiddc
StepHypRef Expression
1 exmiddc 836 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3540 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
3 iffalse 3543 . . 3 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
42, 3jaoi 716 . 2 ((𝜑 ∨ ¬ 𝜑) → if(𝜑, 𝐴, 𝐴) = 𝐴)
51, 4syl 14 1 (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 708  DECID wdc 834   = wceq 1353  ifcif 3535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-if 3536
This theorem is referenced by:  xaddpnf1  9846  xaddmnf1  9848  isumz  11397  prod1dc  11594  1arithlem4  12364  xpscf  12766  lgsval2lem  14414  lgsdilem2  14440
  Copyright terms: Public domain W3C validator