![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifiddc | GIF version |
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifiddc | ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmiddc 837 | . 2 ⊢ (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑)) | |
2 | iftrue 3562 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
3 | iffalse 3565 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) | |
4 | 2, 3 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜑) → if(𝜑, 𝐴, 𝐴) = 𝐴) |
5 | 1, 4 | syl 14 | 1 ⊢ (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ifcif 3557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3558 |
This theorem is referenced by: xaddpnf1 9912 xaddmnf1 9914 isumz 11532 prod1dc 11729 1arithlem4 12504 xpscf 12930 lgsval2lem 15126 lgsdilem2 15152 |
Copyright terms: Public domain | W3C validator |