Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifiddc GIF version

Theorem ifiddc 3505
 Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifiddc (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)

Proof of Theorem ifiddc
StepHypRef Expression
1 exmiddc 821 . 2 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 iftrue 3479 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
3 iffalse 3482 . . 3 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
42, 3jaoi 705 . 2 ((𝜑 ∨ ¬ 𝜑) → if(𝜑, 𝐴, 𝐴) = 𝐴)
51, 4syl 14 1 (DECID 𝜑 → if(𝜑, 𝐴, 𝐴) = 𝐴)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 697  DECID wdc 819   = wceq 1331  ifcif 3474 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-dc 820  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-if 3475 This theorem is referenced by:  xaddpnf1  9641  xaddmnf1  9643  isumz  11170
 Copyright terms: Public domain W3C validator