Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr4id.2 | ⊢ (𝜓 ↔ 𝜒) |
bitr4id.1 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4id | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4id.1 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
2 | bitr4id.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 1, 3 | bitr2di 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imimorbdc 891 baib 914 pm5.6dc 921 xornbidc 1386 mo2dc 2074 reu8 2926 sbc6g 2979 dfss4st 3360 r19.28m 3504 r19.45mv 3508 r19.44mv 3509 r19.27m 3510 ralsnsg 3620 ralsns 3621 iunconstm 3881 iinconstm 3882 exmidsssnc 4189 unisucg 4399 relsng 4714 funssres 5240 fncnv 5264 dff1o5 5451 funimass4 5547 fneqeql2 5605 fnniniseg2 5619 rexsupp 5620 unpreima 5621 dffo3 5643 funfvima 5727 dff13 5747 f1eqcocnv 5770 fliftf 5778 isocnv2 5791 eloprabga 5940 mpo2eqb 5962 opabex3d 6100 opabex3 6101 elxp6 6148 elxp7 6149 sbthlemi5 6938 sbthlemi6 6939 nninfwlporlemd 7148 genpdflem 7469 ltnqpr 7555 ltexprlemloc 7569 xrlenlt 7984 negcon2 8172 dfinfre 8872 sup3exmid 8873 elznn 9228 zq 9585 rpnegap 9643 modqmuladdnn0 10324 shftdm 10786 rexfiuz 10953 rexanuz2 10955 sumsplitdc 11395 fsum2dlemstep 11397 odd2np1 11832 divalgb 11884 infssuzex 11904 isprm4 12073 ctiunctlemudc 12392 tx1cn 13063 tx2cn 13064 cnbl0 13328 cnblcld 13329 reopnap 13332 pilem1 13494 sinq34lt0t 13546 |
Copyright terms: Public domain | W3C validator |