Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr4id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr4id.2 | ⊢ (𝜓 ↔ 𝜒) |
bitr4id.1 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4id | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4id.1 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
2 | bitr4id.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 1, 3 | bitr2di 196 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imimorbdc 886 baib 909 pm5.6dc 916 xornbidc 1381 mo2dc 2069 reu8 2922 sbc6g 2975 dfss4st 3355 r19.28m 3498 r19.45mv 3502 r19.44mv 3503 r19.27m 3504 ralsnsg 3613 ralsns 3614 iunconstm 3874 iinconstm 3875 exmidsssnc 4182 unisucg 4392 relsng 4707 funssres 5230 fncnv 5254 dff1o5 5441 funimass4 5537 fneqeql2 5594 fnniniseg2 5608 rexsupp 5609 unpreima 5610 dffo3 5632 funfvima 5716 dff13 5736 f1eqcocnv 5759 fliftf 5767 isocnv2 5780 eloprabga 5929 mpo2eqb 5951 opabex3d 6089 opabex3 6090 elxp6 6137 elxp7 6138 sbthlemi5 6926 sbthlemi6 6927 genpdflem 7448 ltnqpr 7534 ltexprlemloc 7548 xrlenlt 7963 negcon2 8151 dfinfre 8851 sup3exmid 8852 elznn 9207 zq 9564 rpnegap 9622 modqmuladdnn0 10303 shftdm 10764 rexfiuz 10931 rexanuz2 10933 sumsplitdc 11373 fsum2dlemstep 11375 odd2np1 11810 divalgb 11862 infssuzex 11882 isprm4 12051 ctiunctlemudc 12370 tx1cn 12909 tx2cn 12910 cnbl0 13174 cnblcld 13175 reopnap 13178 pilem1 13340 sinq34lt0t 13392 |
Copyright terms: Public domain | W3C validator |