| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4id | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr4id.2 | ⊢ (𝜓 ↔ 𝜒) |
| bitr4id.1 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bitr4id | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.1 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 2 | bitr4id.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 1, 3 | bitr2di 197 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imimorbdc 898 baib 921 pm5.6dc 928 xornbidc 1411 mo2dc 2110 reu8 2970 sbc6g 3024 dfss4st 3407 r19.28m 3551 r19.45mv 3555 r19.44mv 3556 r19.27m 3557 ralsnsg 3671 ralsns 3672 iunconstm 3937 iinconstm 3938 exmidsssnc 4251 unisucg 4465 relsng 4782 funssres 5318 fncnv 5345 dff1o5 5538 funimass4 5636 fneqeql2 5696 fnniniseg2 5710 rexsupp 5711 unpreima 5712 dffo3 5734 funfvima 5823 dff13 5844 f1eqcocnv 5867 fliftf 5875 isocnv2 5888 eloprabga 6039 mpo2eqb 6062 opabex3d 6213 opabex3 6214 elxp6 6262 elxp7 6263 sbthlemi5 7070 sbthlemi6 7071 nninfwlporlemd 7281 genpdflem 7627 ltnqpr 7713 ltexprlemloc 7727 xrlenlt 8144 negcon2 8332 dfinfre 9036 sup3exmid 9037 elznn 9395 zq 9754 rpnegap 9815 infssuzex 10383 modqmuladdnn0 10520 shftdm 11177 rexfiuz 11344 rexanuz2 11346 sumsplitdc 11787 fsum2dlemstep 11789 odd2np1 12228 divalgb 12280 nninfctlemfo 12405 isprm4 12485 ctiunctlemudc 12852 grp1 13482 nmznsg 13593 qusecsub 13711 iscrng2 13821 opprsubgg 13890 opprsubrngg 14017 domnmuln0 14079 tx1cn 14785 tx2cn 14786 cnbl0 15050 cnblcld 15051 reopnap 15062 pilem1 15295 sinq34lt0t 15347 gausslemma2dlem1a 15579 |
| Copyright terms: Public domain | W3C validator |