![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr4id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
bitr4id.2 | ⊢ (𝜓 ↔ 𝜒) |
bitr4id.1 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4id | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4id.1 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
2 | bitr4id.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 1, 3 | bitr2di 197 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imimorbdc 897 baib 920 pm5.6dc 927 xornbidc 1402 mo2dc 2097 reu8 2957 sbc6g 3011 dfss4st 3393 r19.28m 3537 r19.45mv 3541 r19.44mv 3542 r19.27m 3543 ralsnsg 3656 ralsns 3657 iunconstm 3921 iinconstm 3922 exmidsssnc 4233 unisucg 4446 relsng 4763 funssres 5297 fncnv 5321 dff1o5 5510 funimass4 5608 fneqeql2 5668 fnniniseg2 5682 rexsupp 5683 unpreima 5684 dffo3 5706 funfvima 5791 dff13 5812 f1eqcocnv 5835 fliftf 5843 isocnv2 5856 eloprabga 6006 mpo2eqb 6029 opabex3d 6175 opabex3 6176 elxp6 6224 elxp7 6225 sbthlemi5 7022 sbthlemi6 7023 nninfwlporlemd 7233 genpdflem 7569 ltnqpr 7655 ltexprlemloc 7669 xrlenlt 8086 negcon2 8274 dfinfre 8977 sup3exmid 8978 elznn 9336 zq 9694 rpnegap 9755 modqmuladdnn0 10442 shftdm 10969 rexfiuz 11136 rexanuz2 11138 sumsplitdc 11578 fsum2dlemstep 11580 odd2np1 12017 divalgb 12069 infssuzex 12089 nninfctlemfo 12180 isprm4 12260 ctiunctlemudc 12597 grp1 13181 nmznsg 13286 qusecsub 13404 iscrng2 13514 opprsubgg 13583 opprsubrngg 13710 domnmuln0 13772 tx1cn 14448 tx2cn 14449 cnbl0 14713 cnblcld 14714 reopnap 14725 pilem1 14955 sinq34lt0t 15007 gausslemma2dlem1a 15215 |
Copyright terms: Public domain | W3C validator |