| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr4id | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| bitr4id.2 | ⊢ (𝜓 ↔ 𝜒) |
| bitr4id.1 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bitr4id | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr4id.1 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
| 2 | bitr4id.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 1, 3 | bitr2di 197 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imimorbdc 900 baib 923 pm5.6dc 930 xornbidc 1413 mo2dc 2113 reu8 2979 sbc6g 3033 dfss4st 3417 r19.28m 3561 r19.45mv 3565 r19.44mv 3566 r19.27m 3567 ralsnsg 3683 ralsns 3684 iunconstm 3952 iinconstm 3953 exmidsssnc 4266 unisucg 4482 relsng 4799 funssres 5336 fncnv 5363 dff1o5 5557 funimass4 5657 fneqeql2 5717 fnniniseg2 5731 rexsupp 5732 unpreima 5733 dffo3 5755 funfvima 5844 dff13 5865 f1eqcocnv 5888 fliftf 5896 isocnv2 5909 eloprabga 6062 mpo2eqb 6085 opabex3d 6236 opabex3 6237 elxp6 6285 elxp7 6286 sbthlemi5 7096 sbthlemi6 7097 nninfwlporlemd 7307 genpdflem 7662 ltnqpr 7748 ltexprlemloc 7762 xrlenlt 8179 negcon2 8367 dfinfre 9071 sup3exmid 9072 elznn 9430 zq 9789 rpnegap 9850 infssuzex 10420 modqmuladdnn0 10557 shftdm 11299 rexfiuz 11466 rexanuz2 11468 sumsplitdc 11909 fsum2dlemstep 11911 odd2np1 12350 divalgb 12402 nninfctlemfo 12527 isprm4 12607 ctiunctlemudc 12974 grp1 13605 nmznsg 13716 qusecsub 13834 iscrng2 13944 opprsubgg 14013 opprsubrngg 14140 domnmuln0 14202 tx1cn 14908 tx2cn 14909 cnbl0 15173 cnblcld 15174 reopnap 15185 pilem1 15418 sinq34lt0t 15470 gausslemma2dlem1a 15702 |
| Copyright terms: Public domain | W3C validator |