ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpnst GIF version

Theorem ifpnst 994
Description: Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) (Proof shortened by Wolf Lammen, 5-May-2024.)
Assertion
Ref Expression
ifpnst (STAB 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)))

Proof of Theorem ifpnst
StepHypRef Expression
1 ifpdc 985 . . 3 (if-(𝜑, 𝜓, 𝜒) → DECID 𝜑)
21adantl 277 . 2 ((STAB 𝜑 ∧ if-(𝜑, 𝜓, 𝜒)) → DECID 𝜑)
3 ifpdc 985 . . 3 (if-(¬ 𝜑, 𝜒, 𝜓) → DECID ¬ 𝜑)
4 stdcndc 850 . . . 4 ((STAB 𝜑DECID ¬ 𝜑) ↔ DECID 𝜑)
54biimpi 120 . . 3 ((STAB 𝜑DECID ¬ 𝜑) → DECID 𝜑)
63, 5sylan2 286 . 2 ((STAB 𝜑 ∧ if-(¬ 𝜑, 𝜒, 𝜓)) → DECID 𝜑)
7 dfifp5dc 990 . . . 4 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (¬ 𝜑𝜒))))
87biancomd 271 . . 3 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜒) ∧ (¬ 𝜑𝜓))))
9 dcn 847 . . . 4 (DECID 𝜑DECID ¬ 𝜑)
10 dfifp3dc 988 . . . 4 (DECID ¬ 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ ((¬ 𝜑𝜒) ∧ (¬ 𝜑𝜓))))
119, 10syl 14 . . 3 (DECID 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ ((¬ 𝜑𝜒) ∧ (¬ 𝜑𝜓))))
128, 11bitr4d 191 . 2 (DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)))
132, 6, 12pm5.21nd 921 1 (STAB 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  STAB wstab 835  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-ifp 984
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator