Proof of Theorem ifpnst
| Step | Hyp | Ref
| Expression |
| 1 | | ifpdc 985 |
. . 3
⊢
(if-(𝜑, 𝜓, 𝜒) → DECID 𝜑) |
| 2 | 1 | adantl 277 |
. 2
⊢
((STAB 𝜑 ∧ if-(𝜑, 𝜓, 𝜒)) → DECID 𝜑) |
| 3 | | ifpdc 985 |
. . 3
⊢
(if-(¬ 𝜑, 𝜒, 𝜓) → DECID ¬ 𝜑) |
| 4 | | stdcndc 850 |
. . . 4
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID
𝜑) |
| 5 | 4 | biimpi 120 |
. . 3
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) → DECID
𝜑) |
| 6 | 3, 5 | sylan2 286 |
. 2
⊢
((STAB 𝜑 ∧ if-(¬ 𝜑, 𝜒, 𝜓)) → DECID 𝜑) |
| 7 | | dfifp5dc 990 |
. . . 4
⊢
(DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (¬ 𝜑 → 𝜒)))) |
| 8 | 7 | biancomd 271 |
. . 3
⊢
(DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 → 𝜒) ∧ (¬ 𝜑 ∨ 𝜓)))) |
| 9 | | dcn 847 |
. . . 4
⊢
(DECID 𝜑 → DECID ¬ 𝜑) |
| 10 | | dfifp3dc 988 |
. . . 4
⊢
(DECID ¬ 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ ((¬ 𝜑 → 𝜒) ∧ (¬ 𝜑 ∨ 𝜓)))) |
| 11 | 9, 10 | syl 14 |
. . 3
⊢
(DECID 𝜑 → (if-(¬ 𝜑, 𝜒, 𝜓) ↔ ((¬ 𝜑 → 𝜒) ∧ (¬ 𝜑 ∨ 𝜓)))) |
| 12 | 8, 11 | bitr4d 191 |
. 2
⊢
(DECID 𝜑 → (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓))) |
| 13 | 2, 6, 12 | pm5.21nd 921 |
1
⊢
(STAB 𝜑
→ (if-(𝜑, 𝜓, 𝜒) ↔ if-(¬ 𝜑, 𝜒, 𝜓))) |