Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | orbi2i 762 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | orbi1i 763 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: andir 819 anddi 821 3orbi123i 1189 3or6 1323 excxor 1378 19.33b2 1627 sbequilem 1836 sborv 1888 sbor 1952 r19.43 2633 rexun 3313 indi 3380 difindiss 3387 symdifxor 3399 unab 3400 dfpr2 3608 rabrsndc 3657 pwprss 3801 pwtpss 3802 unipr 3819 uniun 3824 iunun 3960 iunxun 3961 brun 4049 pwunss 4277 ordsoexmid 4555 onintexmid 4566 dcextest 4574 opthprc 4671 cnvsom 5164 ftpg 5692 tpostpos 6255 eldju 7057 djur 7058 ltexprlemloc 7581 axpre-ltwlin 7857 axpre-apti 7859 axpre-mulext 7862 axpre-suploc 7876 fz01or 10081 cbvsum 11336 fsum3 11363 cbvprod 11534 fprodseq 11559 gcdsupex 11925 gcdsupcl 11926 pythagtriplem2 12233 pythagtrip 12250 |
Copyright terms: Public domain | W3C validator |