![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | orbi2i 763 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | orbi1i 764 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: andir 820 anddi 822 3orbi123i 1191 3or6 1334 excxor 1389 19.33b2 1640 sbequilem 1849 sborv 1902 sbor 1970 r19.43 2652 rexun 3339 indi 3406 difindiss 3413 symdifxor 3425 unab 3426 dfpr2 3637 rabrsndc 3686 pwprss 3831 pwtpss 3832 unipr 3849 uniun 3854 iunun 3991 iunxun 3992 brun 4080 pwunss 4314 ordsoexmid 4594 onintexmid 4605 dcextest 4613 opthprc 4710 cnvsom 5209 ftpg 5742 tpostpos 6317 eldju 7127 djur 7128 ltexprlemloc 7667 axpre-ltwlin 7943 axpre-apti 7945 axpre-mulext 7948 axpre-suploc 7962 fz01or 10177 cbvsum 11503 fsum3 11530 cbvprod 11701 fprodseq 11726 gcdsupex 12094 gcdsupcl 12095 pythagtriplem2 12404 pythagtrip 12421 |
Copyright terms: Public domain | W3C validator |