| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version | ||
| Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | orbi2i 763 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
| 3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | orbi1i 764 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: andir 820 anddi 822 3orbi123i 1191 3or6 1335 excxor 1397 19.33b2 1651 sbequilem 1860 sborv 1913 sbor 1981 r19.43 2663 rexun 3352 indi 3419 difindiss 3426 symdifxor 3438 unab 3439 dfpr2 3651 rabrsndc 3700 pwprss 3845 pwtpss 3846 unipr 3863 uniun 3868 iunun 4005 iunxun 4006 brun 4094 pwunss 4329 ordsoexmid 4609 onintexmid 4620 dcextest 4628 opthprc 4725 cnvsom 5225 ftpg 5767 tpostpos 6349 eldju 7169 djur 7170 ltexprlemloc 7719 axpre-ltwlin 7995 axpre-apti 7997 axpre-mulext 8000 axpre-suploc 8014 fz01or 10232 cbvsum 11642 fsum3 11669 cbvprod 11840 fprodseq 11865 gcdsupex 12249 gcdsupcl 12250 pythagtriplem2 12560 pythagtrip 12577 |
| Copyright terms: Public domain | W3C validator |