| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version | ||
| Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | orbi2i 763 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
| 3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | orbi1i 764 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: andir 820 anddi 822 3orbi123i 1191 3or6 1334 excxor 1389 19.33b2 1643 sbequilem 1852 sborv 1905 sbor 1973 r19.43 2655 rexun 3344 indi 3411 difindiss 3418 symdifxor 3430 unab 3431 dfpr2 3642 rabrsndc 3691 pwprss 3836 pwtpss 3837 unipr 3854 uniun 3859 iunun 3996 iunxun 3997 brun 4085 pwunss 4319 ordsoexmid 4599 onintexmid 4610 dcextest 4618 opthprc 4715 cnvsom 5214 ftpg 5749 tpostpos 6331 eldju 7143 djur 7144 ltexprlemloc 7693 axpre-ltwlin 7969 axpre-apti 7971 axpre-mulext 7974 axpre-suploc 7988 fz01or 10205 cbvsum 11544 fsum3 11571 cbvprod 11742 fprodseq 11767 gcdsupex 12151 gcdsupcl 12152 pythagtriplem2 12462 pythagtrip 12479 |
| Copyright terms: Public domain | W3C validator |