| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version | ||
| Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | orbi2i 767 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
| 3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | orbi1i 768 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: andir 824 anddi 826 ifptru 995 ifpfal 996 3orbi123i 1213 3or6 1357 excxor 1420 19.33b2 1675 sbequilem 1884 sborv 1937 sbor 2005 r19.43 2689 rexun 3384 indi 3451 difindiss 3458 symdifxor 3470 unab 3471 elif 3614 dfpr2 3685 rabrsndc 3734 pwprss 3883 pwtpss 3884 unipr 3901 uniun 3906 iunun 4043 iunxun 4044 brun 4134 pwunss 4373 ordsoexmid 4653 onintexmid 4664 dcextest 4672 opthprc 4769 cnvsom 5271 ftpg 5822 tpostpos 6408 eldju 7231 djur 7232 ltexprlemloc 7790 axpre-ltwlin 8066 axpre-apti 8068 axpre-mulext 8071 axpre-suploc 8085 fz01or 10303 cbvsum 11866 fsum3 11893 cbvprod 12064 fprodseq 12089 gcdsupex 12473 gcdsupcl 12474 pythagtriplem2 12784 pythagtrip 12801 |
| Copyright terms: Public domain | W3C validator |