| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version | ||
| Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | orbi2i 764 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
| 3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | orbi1i 765 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: andir 821 anddi 823 3orbi123i 1192 3or6 1336 excxor 1398 19.33b2 1652 sbequilem 1861 sborv 1914 sbor 1982 r19.43 2664 rexun 3353 indi 3420 difindiss 3427 symdifxor 3439 unab 3440 dfpr2 3652 rabrsndc 3701 pwprss 3846 pwtpss 3847 unipr 3864 uniun 3869 iunun 4006 iunxun 4007 brun 4095 pwunss 4330 ordsoexmid 4610 onintexmid 4621 dcextest 4629 opthprc 4726 cnvsom 5226 ftpg 5768 tpostpos 6350 eldju 7170 djur 7171 ltexprlemloc 7720 axpre-ltwlin 7996 axpre-apti 7998 axpre-mulext 8001 axpre-suploc 8015 fz01or 10233 cbvsum 11671 fsum3 11698 cbvprod 11869 fprodseq 11894 gcdsupex 12278 gcdsupcl 12279 pythagtriplem2 12589 pythagtrip 12606 |
| Copyright terms: Public domain | W3C validator |