![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | orbi2i 763 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | orbi1i 764 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: andir 820 anddi 822 3orbi123i 1191 3or6 1334 excxor 1389 19.33b2 1640 sbequilem 1849 sborv 1902 sbor 1970 r19.43 2652 rexun 3340 indi 3407 difindiss 3414 symdifxor 3426 unab 3427 dfpr2 3638 rabrsndc 3687 pwprss 3832 pwtpss 3833 unipr 3850 uniun 3855 iunun 3992 iunxun 3993 brun 4081 pwunss 4315 ordsoexmid 4595 onintexmid 4606 dcextest 4614 opthprc 4711 cnvsom 5210 ftpg 5743 tpostpos 6319 eldju 7129 djur 7130 ltexprlemloc 7669 axpre-ltwlin 7945 axpre-apti 7947 axpre-mulext 7950 axpre-suploc 7964 fz01or 10180 cbvsum 11506 fsum3 11533 cbvprod 11704 fprodseq 11729 gcdsupex 12097 gcdsupcl 12098 pythagtriplem2 12407 pythagtrip 12424 |
Copyright terms: Public domain | W3C validator |