Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | orbi2i 757 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | orbi1i 758 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
5 | 2, 4 | bitri 183 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: andir 814 anddi 816 3orbi123i 1184 3or6 1318 excxor 1373 19.33b2 1622 sbequilem 1831 sborv 1883 sbor 1947 r19.43 2628 rexun 3307 indi 3374 difindiss 3381 symdifxor 3393 unab 3394 dfpr2 3602 rabrsndc 3651 pwprss 3792 pwtpss 3793 unipr 3810 uniun 3815 iunun 3951 iunxun 3952 brun 4040 pwunss 4268 ordsoexmid 4546 onintexmid 4557 dcextest 4565 opthprc 4662 cnvsom 5154 ftpg 5680 tpostpos 6243 eldju 7045 djur 7046 ltexprlemloc 7569 axpre-ltwlin 7845 axpre-apti 7847 axpre-mulext 7850 axpre-suploc 7864 fz01or 10067 cbvsum 11323 fsum3 11350 cbvprod 11521 fprodseq 11546 gcdsupex 11912 gcdsupcl 11913 pythagtriplem2 12220 pythagtrip 12237 |
Copyright terms: Public domain | W3C validator |