Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi12i | GIF version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
orbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
orbi12i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | orbi2i 752 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜑 ∨ 𝜃)) |
3 | orbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | orbi1i 753 | . 2 ⊢ ((𝜑 ∨ 𝜃) ↔ (𝜓 ∨ 𝜃)) |
5 | 2, 4 | bitri 183 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: andir 809 anddi 811 3orbi123i 1179 3or6 1313 excxor 1368 19.33b2 1617 sbequilem 1826 sborv 1878 sbor 1942 r19.43 2624 rexun 3302 indi 3369 difindiss 3376 symdifxor 3388 unab 3389 dfpr2 3595 rabrsndc 3644 pwprss 3785 pwtpss 3786 unipr 3803 uniun 3808 iunun 3944 iunxun 3945 brun 4033 pwunss 4261 ordsoexmid 4539 onintexmid 4550 dcextest 4558 opthprc 4655 cnvsom 5147 ftpg 5669 tpostpos 6232 eldju 7033 djur 7034 ltexprlemloc 7548 axpre-ltwlin 7824 axpre-apti 7826 axpre-mulext 7829 axpre-suploc 7843 fz01or 10046 cbvsum 11301 fsum3 11328 cbvprod 11499 fprodseq 11524 gcdsupex 11890 gcdsupcl 11891 pythagtriplem2 12198 pythagtrip 12215 |
Copyright terms: Public domain | W3C validator |