| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | GIF version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue | ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3603 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | dedlema 975 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
| 3 | 2 | abbi2dv 2348 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
| 4 | 1, 3 | eqtr4id 2281 | 1 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {cab 2215 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: iftruei 3608 iftrued 3609 ifsbdc 3615 ifcldadc 3632 ifeqdadc 3635 ifbothdadc 3636 ifbothdc 3637 ifiddc 3638 ifcldcd 3640 ifnotdc 3641 2if2dc 3642 ifandc 3643 ifordc 3644 ifnefals 3647 pw2f1odclem 7003 fidifsnen 7040 nnnninf 7301 nnnninf2 7302 mkvprop 7333 iftrueb01 7416 uzin 9763 fzprval 10286 fztpval 10287 modifeq2int 10616 seqf1oglem1 10749 seqf1oglem2 10750 bcval 10979 bcval2 10980 ccatval1 11140 swrdccat 11275 pfxccat3a 11278 swrdccat3b 11280 sumrbdclem 11896 fsum3cvg 11897 summodclem2a 11900 isumss2 11912 fsum3ser 11916 fsumsplit 11926 sumsplitdc 11951 prodrbdclem 12090 fproddccvg 12091 iprodap 12099 iprodap0 12101 prodssdc 12108 fprodsplitdc 12115 flodddiv4 12455 gcd0val 12489 dfgcd2 12543 eucalgf 12585 eucalginv 12586 eucalglt 12587 phisum 12771 pc0 12835 pcgcd 12860 pcmptcl 12873 pcmpt 12874 pcmpt2 12875 pcprod 12877 fldivp1 12879 1arithlem4 12897 unct 13021 xpsfrnel 13385 znf1o 14623 dvexp2 15394 elply2 15417 elplyd 15423 ply1termlem 15424 lgsval2lem 15697 lgsneg 15711 lgsdilem 15714 lgsdir2 15720 lgsdir 15722 lgsdi 15724 lgsne0 15725 gausslemma2dlem1a 15745 2lgslem1c 15777 2lgslem3 15788 2lgs 15791 opvtxval 15830 opiedgval 15833 nnsf 16401 nninfsellemsuc 16408 |
| Copyright terms: Public domain | W3C validator |