| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | GIF version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue | ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3563 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | dedlema 971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
| 3 | 2 | abbi2dv 2315 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
| 4 | 1, 3 | eqtr4id 2248 | 1 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 {cab 2182 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: iftruei 3568 iftrued 3569 ifsbdc 3574 ifcldadc 3591 ifbothdadc 3594 ifbothdc 3595 ifiddc 3596 ifcldcd 3598 ifnotdc 3599 ifandc 3600 ifordc 3601 ifnefals 3604 pw2f1odclem 6904 fidifsnen 6940 nnnninf 7201 nnnninf2 7202 mkvprop 7233 uzin 9651 fzprval 10174 fztpval 10175 modifeq2int 10495 seqf1oglem1 10628 seqf1oglem2 10629 bcval 10858 bcval2 10859 sumrbdclem 11559 fsum3cvg 11560 summodclem2a 11563 isumss2 11575 fsum3ser 11579 fsumsplit 11589 sumsplitdc 11614 prodrbdclem 11753 fproddccvg 11754 iprodap 11762 iprodap0 11764 prodssdc 11771 fprodsplitdc 11778 flodddiv4 12118 gcd0val 12152 dfgcd2 12206 eucalgf 12248 eucalginv 12249 eucalglt 12250 phisum 12434 pc0 12498 pcgcd 12523 pcmptcl 12536 pcmpt 12537 pcmpt2 12538 pcprod 12540 fldivp1 12542 1arithlem4 12560 unct 12684 xpsfrnel 13046 znf1o 14283 dvexp2 15032 elply2 15055 elplyd 15061 ply1termlem 15062 lgsval2lem 15335 lgsneg 15349 lgsdilem 15352 lgsdir2 15358 lgsdir 15360 lgsdi 15362 lgsne0 15363 gausslemma2dlem1a 15383 2lgslem1c 15415 2lgslem3 15426 2lgs 15429 nnsf 15736 nninfsellemsuc 15743 |
| Copyright terms: Public domain | W3C validator |