| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | GIF version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue | ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3563 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | dedlema 971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
| 3 | 2 | abbi2dv 2315 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
| 4 | 1, 3 | eqtr4id 2248 | 1 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 {cab 2182 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: iftruei 3568 iftrued 3569 ifsbdc 3574 ifcldadc 3591 ifbothdadc 3594 ifbothdc 3595 ifiddc 3596 ifcldcd 3598 ifnotdc 3599 ifandc 3600 ifordc 3601 ifnefals 3604 pw2f1odclem 6904 fidifsnen 6940 nnnninf 7201 nnnninf2 7202 mkvprop 7233 uzin 9653 fzprval 10176 fztpval 10177 modifeq2int 10497 seqf1oglem1 10630 seqf1oglem2 10631 bcval 10860 bcval2 10861 sumrbdclem 11561 fsum3cvg 11562 summodclem2a 11565 isumss2 11577 fsum3ser 11581 fsumsplit 11591 sumsplitdc 11616 prodrbdclem 11755 fproddccvg 11756 iprodap 11764 iprodap0 11766 prodssdc 11773 fprodsplitdc 11780 flodddiv4 12120 gcd0val 12154 dfgcd2 12208 eucalgf 12250 eucalginv 12251 eucalglt 12252 phisum 12436 pc0 12500 pcgcd 12525 pcmptcl 12538 pcmpt 12539 pcmpt2 12540 pcprod 12542 fldivp1 12544 1arithlem4 12562 unct 12686 xpsfrnel 13048 znf1o 14285 dvexp2 15034 elply2 15057 elplyd 15063 ply1termlem 15064 lgsval2lem 15337 lgsneg 15351 lgsdilem 15354 lgsdir2 15360 lgsdir 15362 lgsdi 15364 lgsne0 15365 gausslemma2dlem1a 15385 2lgslem1c 15417 2lgslem3 15428 2lgs 15431 nnsf 15738 nninfsellemsuc 15745 |
| Copyright terms: Public domain | W3C validator |