Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iftrue | GIF version |
Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
iftrue | ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3520 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | dedlema 959 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
3 | 2 | abbi2dv 2284 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
4 | 1, 3 | eqtr4id 2217 | 1 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 {cab 2151 ifcif 3519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3520 |
This theorem is referenced by: iftruei 3525 iftrued 3526 ifsbdc 3531 ifcldadc 3548 ifbothdadc 3550 ifbothdc 3551 ifiddc 3552 ifcldcd 3554 ifnotdc 3555 ifandc 3556 fidifsnen 6832 nnnninf 7086 nnnninf2 7087 mkvprop 7118 uzin 9494 fzprval 10013 fztpval 10014 modifeq2int 10317 bcval 10658 bcval2 10659 sumrbdclem 11314 fsum3cvg 11315 summodclem2a 11318 isumss2 11330 fsum3ser 11334 fsumsplit 11344 sumsplitdc 11369 prodrbdclem 11508 fproddccvg 11509 iprodap 11517 iprodap0 11519 prodssdc 11526 fprodsplitdc 11533 flodddiv4 11867 gcd0val 11889 dfgcd2 11943 eucalgf 11983 eucalginv 11984 eucalglt 11985 phisum 12168 pc0 12232 pcgcd 12256 pcmptcl 12268 pcmpt 12269 pcmpt2 12270 pcprod 12272 fldivp1 12274 1arithlem4 12292 unct 12371 dvexp2 13276 lgsval2lem 13511 lgsneg 13525 lgsdilem 13528 lgsdir2 13534 lgsdir 13536 lgsdi 13538 lgsne0 13539 nnsf 13845 nninfsellemsuc 13852 |
Copyright terms: Public domain | W3C validator |