![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iftrue | GIF version |
Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
iftrue | ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3559 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | dedlema 971 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
3 | 2 | abbi2dv 2312 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
4 | 1, 3 | eqtr4id 2245 | 1 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 {cab 2179 ifcif 3558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3559 |
This theorem is referenced by: iftruei 3564 iftrued 3565 ifsbdc 3570 ifcldadc 3587 ifbothdadc 3590 ifbothdc 3591 ifiddc 3592 ifcldcd 3594 ifnotdc 3595 ifandc 3596 ifordc 3597 ifnefals 3600 pw2f1odclem 6892 fidifsnen 6928 nnnninf 7187 nnnninf2 7188 mkvprop 7219 uzin 9628 fzprval 10151 fztpval 10152 modifeq2int 10460 seqf1oglem1 10593 seqf1oglem2 10594 bcval 10823 bcval2 10824 sumrbdclem 11523 fsum3cvg 11524 summodclem2a 11527 isumss2 11539 fsum3ser 11543 fsumsplit 11553 sumsplitdc 11578 prodrbdclem 11717 fproddccvg 11718 iprodap 11726 iprodap0 11728 prodssdc 11735 fprodsplitdc 11742 flodddiv4 12078 gcd0val 12100 dfgcd2 12154 eucalgf 12196 eucalginv 12197 eucalglt 12198 phisum 12381 pc0 12445 pcgcd 12470 pcmptcl 12483 pcmpt 12484 pcmpt2 12485 pcprod 12487 fldivp1 12489 1arithlem4 12507 unct 12602 xpsfrnel 12930 znf1o 14150 dvexp2 14891 elply2 14914 elplyd 14920 ply1termlem 14921 lgsval2lem 15167 lgsneg 15181 lgsdilem 15184 lgsdir2 15190 lgsdir 15192 lgsdi 15194 lgsne0 15195 gausslemma2dlem1a 15215 2lgslem1c 15247 2lgslem3 15258 2lgs 15261 nnsf 15565 nninfsellemsuc 15572 |
Copyright terms: Public domain | W3C validator |