| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrue | GIF version | ||
| Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| iftrue | ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3583 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | dedlema 974 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
| 3 | 2 | abbi2dv 2328 | . 2 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
| 4 | 1, 3 | eqtr4id 2261 | 1 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 712 = wceq 1375 ∈ wcel 2180 {cab 2195 ifcif 3582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-if 3583 |
| This theorem is referenced by: iftruei 3588 iftrued 3589 ifsbdc 3595 ifcldadc 3612 ifeqdadc 3615 ifbothdadc 3616 ifbothdc 3617 ifiddc 3618 ifcldcd 3620 ifnotdc 3621 2if2dc 3622 ifandc 3623 ifordc 3624 ifnefals 3627 pw2f1odclem 6963 fidifsnen 7000 nnnninf 7261 nnnninf2 7262 mkvprop 7293 iftrueb01 7376 uzin 9723 fzprval 10246 fztpval 10247 modifeq2int 10575 seqf1oglem1 10708 seqf1oglem2 10709 bcval 10938 bcval2 10939 ccatval1 11098 swrdccat 11233 pfxccat3a 11236 swrdccat3b 11238 sumrbdclem 11854 fsum3cvg 11855 summodclem2a 11858 isumss2 11870 fsum3ser 11874 fsumsplit 11884 sumsplitdc 11909 prodrbdclem 12048 fproddccvg 12049 iprodap 12057 iprodap0 12059 prodssdc 12066 fprodsplitdc 12073 flodddiv4 12413 gcd0val 12447 dfgcd2 12501 eucalgf 12543 eucalginv 12544 eucalglt 12545 phisum 12729 pc0 12793 pcgcd 12818 pcmptcl 12831 pcmpt 12832 pcmpt2 12833 pcprod 12835 fldivp1 12837 1arithlem4 12855 unct 12979 xpsfrnel 13343 znf1o 14580 dvexp2 15351 elply2 15374 elplyd 15380 ply1termlem 15381 lgsval2lem 15654 lgsneg 15668 lgsdilem 15671 lgsdir2 15677 lgsdir 15679 lgsdi 15681 lgsne0 15682 gausslemma2dlem1a 15702 2lgslem1c 15734 2lgslem3 15745 2lgs 15748 opvtxval 15787 opiedgval 15790 nnsf 16282 nninfsellemsuc 16289 |
| Copyright terms: Public domain | W3C validator |