ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim12i GIF version

Theorem imim12i 59
Description: Inference joining two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 29-Oct-2011.)
Hypotheses
Ref Expression
imim12i.1 (𝜑𝜓)
imim12i.2 (𝜒𝜃)
Assertion
Ref Expression
imim12i ((𝜓𝜒) → (𝜑𝜃))

Proof of Theorem imim12i
StepHypRef Expression
1 imim12i.1 . 2 (𝜑𝜓)
2 imim12i.2 . . 3 (𝜒𝜃)
32imim2i 12 . 2 ((𝜓𝜒) → (𝜓𝜃))
41, 3syl5 32 1 ((𝜓𝜒) → (𝜑𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim1i  60  hbim  1538  19.38  1669  cbvexdh  1919  exmoeudc  2082  bj-bdfindis  13982
  Copyright terms: Public domain W3C validator