![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.38 | GIF version |
Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1495 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | hba1 1540 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
3 | 1, 2 | hbim 1545 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.8a 1590 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
5 | ax-4 1510 | . . 3 ⊢ (∀𝑥𝜓 → 𝜓) | |
6 | 4, 5 | imim12i 59 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) |
7 | 3, 6 | alrimih 1469 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.23t 1677 sbi2v 1892 mo3h 2079 rgenm 3527 ralm 3529 |
Copyright terms: Public domain | W3C validator |