| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.38 | GIF version | ||
| Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| 19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbe1 1509 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | hba1 1554 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 3 | 1, 2 | hbim 1559 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) | 
| 4 | 19.8a 1604 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 5 | ax-4 1524 | . . 3 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 6 | 4, 5 | imim12i 59 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) | 
| 7 | 3, 6 | alrimih 1483 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 19.23t 1691 sbi2v 1907 mo3h 2098 ralm 3554 | 
| Copyright terms: Public domain | W3C validator |