Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.38 | GIF version |
Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1483 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
2 | hba1 1528 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
3 | 1, 2 | hbim 1533 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.8a 1578 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
5 | ax-4 1498 | . . 3 ⊢ (∀𝑥𝜓 → 𝜓) | |
6 | 4, 5 | imim12i 59 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) |
7 | 3, 6 | alrimih 1457 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.23t 1665 sbi2v 1880 mo3h 2067 rgenm 3511 ralm 3513 |
Copyright terms: Public domain | W3C validator |