| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.38 | GIF version | ||
| Description: Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.38 | ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1518 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 2 | hba1 1563 | . . 3 ⊢ (∀𝑥𝜓 → ∀𝑥∀𝑥𝜓) | |
| 3 | 1, 2 | hbim 1568 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.8a 1613 | . . 3 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 5 | ax-4 1533 | . . 3 ⊢ (∀𝑥𝜓 → 𝜓) | |
| 6 | 4, 5 | imim12i 59 | . 2 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) |
| 7 | 3, 6 | alrimih 1492 | 1 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∃wex 1515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.23t 1700 sbi2v 1916 mo3h 2107 ralm 3564 |
| Copyright terms: Public domain | W3C validator |