| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | GIF version | ||
| Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4692 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4692, finds2 4693, finds1 4694. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
| bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
| bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
| bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
| bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
| bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
| bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
| Ref | Expression |
|---|---|
| bj-bdfindis | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bdfindis.nf0 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 0ex 4211 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | bj-bdfindis.0 | . . . 4 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
| 4 | 1, 2, 3 | elabf2 16146 | . . 3 ⊢ (𝜓 → ∅ ∈ {𝑥 ∣ 𝜑}) |
| 5 | bj-bdfindis.nf1 | . . . . . 6 ⊢ Ⅎ𝑥𝜒 | |
| 6 | bj-bdfindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
| 7 | 5, 6 | elabf1 16145 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → 𝜒) |
| 8 | bj-bdfindis.nfsuc | . . . . . 6 ⊢ Ⅎ𝑥𝜃 | |
| 9 | vex 2802 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | 9 | bj-sucex 16286 | . . . . . 6 ⊢ suc 𝑦 ∈ V |
| 11 | bj-bdfindis.suc | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
| 12 | 8, 10, 11 | elabf2 16146 | . . . . 5 ⊢ (𝜃 → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 13 | 7, 12 | imim12i 59 | . . . 4 ⊢ ((𝜒 → 𝜃) → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 14 | 13 | ralimi 2593 | . . 3 ⊢ (∀𝑦 ∈ ω (𝜒 → 𝜃) → ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 15 | bj-bdfindis.bd | . . . . 5 ⊢ BOUNDED 𝜑 | |
| 16 | 15 | bdcab 16212 | . . . 4 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
| 17 | 16 | bdpeano5 16306 | . . 3 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) |
| 18 | 4, 14, 17 | syl2an 289 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ω ⊆ {𝑥 ∣ 𝜑}) |
| 19 | ssabral 3295 | . 2 ⊢ (ω ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ ω 𝜑) | |
| 20 | 18, 19 | sylib 122 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 suc csuc 4456 ωcom 4682 BOUNDED wbd 16175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 ax-infvn 16304 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-bdfindisg 16311 bj-bdfindes 16312 bj-nn0suc0 16313 |
| Copyright terms: Public domain | W3C validator |