![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | GIF version |
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4633 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4633, finds2 4634, finds1 4635. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
Ref | Expression |
---|---|
bj-bdfindis | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.nf0 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
2 | 0ex 4157 | . . . 4 ⊢ ∅ ∈ V | |
3 | bj-bdfindis.0 | . . . 4 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
4 | 1, 2, 3 | elabf2 15344 | . . 3 ⊢ (𝜓 → ∅ ∈ {𝑥 ∣ 𝜑}) |
5 | bj-bdfindis.nf1 | . . . . . 6 ⊢ Ⅎ𝑥𝜒 | |
6 | bj-bdfindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
7 | 5, 6 | elabf1 15343 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → 𝜒) |
8 | bj-bdfindis.nfsuc | . . . . . 6 ⊢ Ⅎ𝑥𝜃 | |
9 | vex 2763 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | 9 | bj-sucex 15485 | . . . . . 6 ⊢ suc 𝑦 ∈ V |
11 | bj-bdfindis.suc | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
12 | 8, 10, 11 | elabf2 15344 | . . . . 5 ⊢ (𝜃 → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
13 | 7, 12 | imim12i 59 | . . . 4 ⊢ ((𝜒 → 𝜃) → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
14 | 13 | ralimi 2557 | . . 3 ⊢ (∀𝑦 ∈ ω (𝜒 → 𝜃) → ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
15 | bj-bdfindis.bd | . . . . 5 ⊢ BOUNDED 𝜑 | |
16 | 15 | bdcab 15411 | . . . 4 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
17 | 16 | bdpeano5 15505 | . . 3 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) |
18 | 4, 14, 17 | syl2an 289 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ω ⊆ {𝑥 ∣ 𝜑}) |
19 | ssabral 3251 | . 2 ⊢ (ω ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ ω 𝜑) | |
20 | 18, 19 | sylib 122 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 {cab 2179 ∀wral 2472 ⊆ wss 3154 ∅c0 3447 suc csuc 4397 ωcom 4623 BOUNDED wbd 15374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4156 ax-pr 4239 ax-un 4465 ax-bd0 15375 ax-bdor 15378 ax-bdex 15381 ax-bdeq 15382 ax-bdel 15383 ax-bdsb 15384 ax-bdsep 15446 ax-infvn 15503 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-suc 4403 df-iom 4624 df-bdc 15403 df-bj-ind 15489 |
This theorem is referenced by: bj-bdfindisg 15510 bj-bdfindes 15511 bj-nn0suc0 15512 |
Copyright terms: Public domain | W3C validator |