| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | GIF version | ||
| Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4666 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4666, finds2 4667, finds1 4668. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
| bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
| bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
| bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
| bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
| bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
| bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
| Ref | Expression |
|---|---|
| bj-bdfindis | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-bdfindis.nf0 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 0ex 4187 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | bj-bdfindis.0 | . . . 4 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
| 4 | 1, 2, 3 | elabf2 15918 | . . 3 ⊢ (𝜓 → ∅ ∈ {𝑥 ∣ 𝜑}) |
| 5 | bj-bdfindis.nf1 | . . . . . 6 ⊢ Ⅎ𝑥𝜒 | |
| 6 | bj-bdfindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
| 7 | 5, 6 | elabf1 15917 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → 𝜒) |
| 8 | bj-bdfindis.nfsuc | . . . . . 6 ⊢ Ⅎ𝑥𝜃 | |
| 9 | vex 2779 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | 9 | bj-sucex 16058 | . . . . . 6 ⊢ suc 𝑦 ∈ V |
| 11 | bj-bdfindis.suc | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
| 12 | 8, 10, 11 | elabf2 15918 | . . . . 5 ⊢ (𝜃 → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 13 | 7, 12 | imim12i 59 | . . . 4 ⊢ ((𝜒 → 𝜃) → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 14 | 13 | ralimi 2571 | . . 3 ⊢ (∀𝑦 ∈ ω (𝜒 → 𝜃) → ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 15 | bj-bdfindis.bd | . . . . 5 ⊢ BOUNDED 𝜑 | |
| 16 | 15 | bdcab 15984 | . . . 4 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
| 17 | 16 | bdpeano5 16078 | . . 3 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) |
| 18 | 4, 14, 17 | syl2an 289 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ω ⊆ {𝑥 ∣ 𝜑}) |
| 19 | ssabral 3272 | . 2 ⊢ (ω ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ ω 𝜑) | |
| 20 | 18, 19 | sylib 122 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2178 {cab 2193 ∀wral 2486 ⊆ wss 3174 ∅c0 3468 suc csuc 4430 ωcom 4656 BOUNDED wbd 15947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-bd0 15948 ax-bdor 15951 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 ax-infvn 16076 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: bj-bdfindisg 16083 bj-bdfindes 16084 bj-nn0suc0 16085 |
| Copyright terms: Public domain | W3C validator |