Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | GIF version |
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4577 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4577, finds2 4578, finds1 4579. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | ⊢ BOUNDED 𝜑 |
bj-bdfindis.nf0 | ⊢ Ⅎ𝑥𝜓 |
bj-bdfindis.nf1 | ⊢ Ⅎ𝑥𝜒 |
bj-bdfindis.nfsuc | ⊢ Ⅎ𝑥𝜃 |
bj-bdfindis.0 | ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
bj-bdfindis.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
bj-bdfindis.suc | ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
Ref | Expression |
---|---|
bj-bdfindis | ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.nf0 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
2 | 0ex 4109 | . . . 4 ⊢ ∅ ∈ V | |
3 | bj-bdfindis.0 | . . . 4 ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | |
4 | 1, 2, 3 | elabf2 13663 | . . 3 ⊢ (𝜓 → ∅ ∈ {𝑥 ∣ 𝜑}) |
5 | bj-bdfindis.nf1 | . . . . . 6 ⊢ Ⅎ𝑥𝜒 | |
6 | bj-bdfindis.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | |
7 | 5, 6 | elabf1 13662 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} → 𝜒) |
8 | bj-bdfindis.nfsuc | . . . . . 6 ⊢ Ⅎ𝑥𝜃 | |
9 | vex 2729 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | 9 | bj-sucex 13805 | . . . . . 6 ⊢ suc 𝑦 ∈ V |
11 | bj-bdfindis.suc | . . . . . 6 ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | |
12 | 8, 10, 11 | elabf2 13663 | . . . . 5 ⊢ (𝜃 → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
13 | 7, 12 | imim12i 59 | . . . 4 ⊢ ((𝜒 → 𝜃) → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
14 | 13 | ralimi 2529 | . . 3 ⊢ (∀𝑦 ∈ ω (𝜒 → 𝜃) → ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
15 | bj-bdfindis.bd | . . . . 5 ⊢ BOUNDED 𝜑 | |
16 | 15 | bdcab 13731 | . . . 4 ⊢ BOUNDED {𝑥 ∣ 𝜑} |
17 | 16 | bdpeano5 13825 | . . 3 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) |
18 | 4, 14, 17 | syl2an 287 | . 2 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ω ⊆ {𝑥 ∣ 𝜑}) |
19 | ssabral 3213 | . 2 ⊢ (ω ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥 ∈ ω 𝜑) | |
20 | 18, 19 | sylib 121 | 1 ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 {cab 2151 ∀wral 2444 ⊆ wss 3116 ∅c0 3409 suc csuc 4343 ωcom 4567 BOUNDED wbd 13694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-infvn 13823 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-bdfindisg 13830 bj-bdfindes 13831 bj-nn0suc0 13832 |
Copyright terms: Public domain | W3C validator |