| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sylsyld | GIF version | ||
| Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) | 
| Ref | Expression | 
|---|---|
| sylsyld.1 | ⊢ (𝜑 → 𝜓) | 
| sylsyld.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) | 
| sylsyld.3 | ⊢ (𝜓 → (𝜃 → 𝜏)) | 
| Ref | Expression | 
|---|---|
| sylsyld | ⊢ (𝜑 → (𝜒 → 𝜏)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylsyld.2 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 2 | sylsyld.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | sylsyld.3 | . . 3 ⊢ (𝜓 → (𝜃 → 𝜏)) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → (𝜃 → 𝜏)) | 
| 5 | 1, 4 | syld 45 | 1 ⊢ (𝜑 → (𝜒 → 𝜏)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: ax10o 1729 a16g 1878 rspc2vd 3153 trintssm 4147 funimaexglem 5341 smoiun 6359 findcard2 6950 ctssdc 7179 mkvprop 7224 ltexprlemrl 7677 archsr 7849 elfz0ubfz0 10200 ctinf 12647 | 
| Copyright terms: Public domain | W3C validator |