ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylsyld GIF version

Theorem sylsyld 58
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.)
Hypotheses
Ref Expression
sylsyld.1 (𝜑𝜓)
sylsyld.2 (𝜑 → (𝜒𝜃))
sylsyld.3 (𝜓 → (𝜃𝜏))
Assertion
Ref Expression
sylsyld (𝜑 → (𝜒𝜏))

Proof of Theorem sylsyld
StepHypRef Expression
1 sylsyld.2 . 2 (𝜑 → (𝜒𝜃))
2 sylsyld.1 . . 3 (𝜑𝜓)
3 sylsyld.3 . . 3 (𝜓 → (𝜃𝜏))
42, 3syl 14 . 2 (𝜑 → (𝜃𝜏))
51, 4syld 45 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ax10o  1708  a16g  1857  rspc2vd  3117  trintssm  4103  funimaexglem  5281  smoiun  6280  findcard2  6867  ctssdc  7090  mkvprop  7134  ltexprlemrl  7572  archsr  7744  elfz0ubfz0  10081  ctinf  12385
  Copyright terms: Public domain W3C validator