ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylsyld GIF version

Theorem sylsyld 58
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.)
Hypotheses
Ref Expression
sylsyld.1 (𝜑𝜓)
sylsyld.2 (𝜑 → (𝜒𝜃))
sylsyld.3 (𝜓 → (𝜃𝜏))
Assertion
Ref Expression
sylsyld (𝜑 → (𝜒𝜏))

Proof of Theorem sylsyld
StepHypRef Expression
1 sylsyld.2 . 2 (𝜑 → (𝜒𝜃))
2 sylsyld.1 . . 3 (𝜑𝜓)
3 sylsyld.3 . . 3 (𝜓 → (𝜃𝜏))
42, 3syl 14 . 2 (𝜑 → (𝜃𝜏))
51, 4syld 45 1 (𝜑 → (𝜒𝜏))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ax10o  1761  a16g  1910  rspc2vd  3193  trintssm  4198  funimaexglem  5404  smoiun  6453  en2  6981  findcard2  7059  ctssdc  7288  mkvprop  7333  ltexprlemrl  7805  archsr  7977  elfz0ubfz0  10329  ctinf  13009  wlkres  16098
  Copyright terms: Public domain W3C validator