| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmoeudc | GIF version | ||
| Description: Existence in terms of "at most one" and uniqueness. (Contributed by Jim Kingdon, 3-Jul-2018.) |
| Ref | Expression |
|---|---|
| exmoeudc | ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2049 | . . . 4 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
| 2 | 1 | biimpi 120 | . . 3 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 3 | 2 | com12 30 | . 2 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
| 4 | 1 | biimpri 133 | . . . 4 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃*𝑥𝜑) |
| 5 | euex 2075 | . . . 4 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
| 6 | 4, 5 | imim12i 59 | . . 3 ⊢ ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑)) |
| 7 | peircedc 915 | . . 3 ⊢ (DECID ∃𝑥𝜑 → (((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) → ∃𝑥𝜑)) | |
| 8 | 6, 7 | syl5 32 | . 2 ⊢ (DECID ∃𝑥𝜑 → ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑)) |
| 9 | 3, 8 | impbid2 143 | 1 ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |