ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmoeudc GIF version

Theorem exmoeudc 2141
Description: Existence in terms of "at most one" and uniqueness. (Contributed by Jim Kingdon, 3-Jul-2018.)
Assertion
Ref Expression
exmoeudc (DECID𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)))

Proof of Theorem exmoeudc
StepHypRef Expression
1 df-mo 2081 . . . 4 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
21biimpi 120 . . 3 (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
32com12 30 . 2 (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑))
41biimpri 133 . . . 4 ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃*𝑥𝜑)
5 euex 2107 . . . 4 (∃!𝑥𝜑 → ∃𝑥𝜑)
64, 5imim12i 59 . . 3 ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑))
7 peircedc 919 . . 3 (DECID𝑥𝜑 → (((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) → ∃𝑥𝜑))
86, 7syl5 32 . 2 (DECID𝑥𝜑 → ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑))
93, 8impbid2 143 1 (DECID𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 839  wex 1538  ∃!weu 2077  ∃*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-dc 840  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator