ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmoeudc GIF version

Theorem exmoeudc 2082
Description: Existence in terms of "at most one" and uniqueness. (Contributed by Jim Kingdon, 3-Jul-2018.)
Assertion
Ref Expression
exmoeudc (DECID𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)))

Proof of Theorem exmoeudc
StepHypRef Expression
1 df-mo 2023 . . . 4 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
21biimpi 119 . . 3 (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
32com12 30 . 2 (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑))
41biimpri 132 . . . 4 ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃*𝑥𝜑)
5 euex 2049 . . . 4 (∃!𝑥𝜑 → ∃𝑥𝜑)
64, 5imim12i 59 . . 3 ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑))
7 peircedc 909 . . 3 (DECID𝑥𝜑 → (((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) → ∃𝑥𝜑))
86, 7syl5 32 . 2 (DECID𝑥𝜑 → ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑))
93, 8impbid2 142 1 (DECID𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  DECID wdc 829  wex 1485  ∃!weu 2019  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-dc 830  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator