![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmoeudc | GIF version |
Description: Existence in terms of "at most one" and uniqueness. (Contributed by Jim Kingdon, 3-Jul-2018.) |
Ref | Expression |
---|---|
exmoeudc | ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2040 | . . . 4 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | 1 | biimpi 120 | . . 3 ⊢ (∃*𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑)) |
3 | 2 | com12 30 | . 2 ⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 → ∃!𝑥𝜑)) |
4 | 1 | biimpri 133 | . . . 4 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃*𝑥𝜑) |
5 | euex 2066 | . . . 4 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
6 | 4, 5 | imim12i 59 | . . 3 ⊢ ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑)) |
7 | peircedc 915 | . . 3 ⊢ (DECID ∃𝑥𝜑 → (((∃𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑) → ∃𝑥𝜑)) | |
8 | 6, 7 | syl5 32 | . 2 ⊢ (DECID ∃𝑥𝜑 → ((∃*𝑥𝜑 → ∃!𝑥𝜑) → ∃𝑥𝜑)) |
9 | 3, 8 | impbid2 143 | 1 ⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∃wex 1502 ∃!weu 2036 ∃*wmo 2037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |