Proof of Theorem cbvexdh
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-17 1540 | 
. . 3
⊢ (𝜑 → ∀𝑥𝜑) | 
| 2 |   | ax-17 1540 | 
. . . 4
⊢ (𝜒 → ∀𝑥𝜒) | 
| 3 | 2 | hbex 1650 | 
. . 3
⊢
(∃𝑦𝜒 → ∀𝑥∃𝑦𝜒) | 
| 4 |   | cbvexdh.1 | 
. . . . 5
⊢ (𝜑 → ∀𝑦𝜑) | 
| 5 |   | cbvexdh.2 | 
. . . . 5
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | 
| 6 |   | cbvexdh.3 | 
. . . . . 6
⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | 
| 7 |   | equcomi 1718 | 
. . . . . . 7
⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | 
| 8 |   | bicom1 131 | 
. . . . . . 7
⊢ ((𝜓 ↔ 𝜒) → (𝜒 ↔ 𝜓)) | 
| 9 | 7, 8 | imim12i 59 | 
. . . . . 6
⊢ ((𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) → (𝑦 = 𝑥 → (𝜒 ↔ 𝜓))) | 
| 10 | 6, 9 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 ↔ 𝜓))) | 
| 11 | 4, 5, 10 | equsexd 1743 | 
. . . 4
⊢ (𝜑 → (∃𝑦(𝑦 = 𝑥 ∧ 𝜒) ↔ 𝜓)) | 
| 12 |   | simpr 110 | 
. . . . 5
⊢ ((𝑦 = 𝑥 ∧ 𝜒) → 𝜒) | 
| 13 | 12 | eximi 1614 | 
. . . 4
⊢
(∃𝑦(𝑦 = 𝑥 ∧ 𝜒) → ∃𝑦𝜒) | 
| 14 | 11, 13 | biimtrrdi 164 | 
. . 3
⊢ (𝜑 → (𝜓 → ∃𝑦𝜒)) | 
| 15 | 1, 3, 14 | exlimdh 1610 | 
. 2
⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒)) | 
| 16 | 1, 5 | eximdh 1625 | 
. . . 4
⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥∀𝑦𝜓)) | 
| 17 |   | 19.12 1679 | 
. . . 4
⊢
(∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) | 
| 18 | 16, 17 | syl6 33 | 
. . 3
⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑦∃𝑥𝜓)) | 
| 19 | 2 | a1i 9 | 
. . . . 5
⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | 
| 20 | 1, 19, 6 | equsexd 1743 | 
. . . 4
⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) | 
| 21 |   | simpr 110 | 
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ 𝜓) → 𝜓) | 
| 22 | 21 | eximi 1614 | 
. . . 4
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑥𝜓) | 
| 23 | 20, 22 | biimtrrdi 164 | 
. . 3
⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) | 
| 24 | 4, 18, 23 | exlimd2 1609 | 
. 2
⊢ (𝜑 → (∃𝑦𝜒 → ∃𝑥𝜓)) | 
| 25 | 15, 24 | impbid 129 | 
1
⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |