Proof of Theorem cbvexdh
Step | Hyp | Ref
| Expression |
1 | | ax-17 1519 |
. . 3
⊢ (𝜑 → ∀𝑥𝜑) |
2 | | ax-17 1519 |
. . . 4
⊢ (𝜒 → ∀𝑥𝜒) |
3 | 2 | hbex 1629 |
. . 3
⊢
(∃𝑦𝜒 → ∀𝑥∃𝑦𝜒) |
4 | | cbvexdh.1 |
. . . . 5
⊢ (𝜑 → ∀𝑦𝜑) |
5 | | cbvexdh.2 |
. . . . 5
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
6 | | cbvexdh.3 |
. . . . . 6
⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
7 | | equcomi 1697 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) |
8 | | bicom1 130 |
. . . . . . 7
⊢ ((𝜓 ↔ 𝜒) → (𝜒 ↔ 𝜓)) |
9 | 7, 8 | imim12i 59 |
. . . . . 6
⊢ ((𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) → (𝑦 = 𝑥 → (𝜒 ↔ 𝜓))) |
10 | 6, 9 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 ↔ 𝜓))) |
11 | 4, 5, 10 | equsexd 1722 |
. . . 4
⊢ (𝜑 → (∃𝑦(𝑦 = 𝑥 ∧ 𝜒) ↔ 𝜓)) |
12 | | simpr 109 |
. . . . 5
⊢ ((𝑦 = 𝑥 ∧ 𝜒) → 𝜒) |
13 | 12 | eximi 1593 |
. . . 4
⊢
(∃𝑦(𝑦 = 𝑥 ∧ 𝜒) → ∃𝑦𝜒) |
14 | 11, 13 | syl6bir 163 |
. . 3
⊢ (𝜑 → (𝜓 → ∃𝑦𝜒)) |
15 | 1, 3, 14 | exlimdh 1589 |
. 2
⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒)) |
16 | 1, 5 | eximdh 1604 |
. . . 4
⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑥∀𝑦𝜓)) |
17 | | 19.12 1658 |
. . . 4
⊢
(∃𝑥∀𝑦𝜓 → ∀𝑦∃𝑥𝜓) |
18 | 16, 17 | syl6 33 |
. . 3
⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑦∃𝑥𝜓)) |
19 | 2 | a1i 9 |
. . . . 5
⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
20 | 1, 19, 6 | equsexd 1722 |
. . . 4
⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) |
21 | | simpr 109 |
. . . . 5
⊢ ((𝑥 = 𝑦 ∧ 𝜓) → 𝜓) |
22 | 21 | eximi 1593 |
. . . 4
⊢
(∃𝑥(𝑥 = 𝑦 ∧ 𝜓) → ∃𝑥𝜓) |
23 | 20, 22 | syl6bir 163 |
. . 3
⊢ (𝜑 → (𝜒 → ∃𝑥𝜓)) |
24 | 4, 18, 23 | exlimd2 1588 |
. 2
⊢ (𝜑 → (∃𝑦𝜒 → ∃𝑥𝜓)) |
25 | 15, 24 | impbid 128 |
1
⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) |