ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp4a GIF version

Theorem imp4a 347
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp4a (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))

Proof of Theorem imp4a
StepHypRef Expression
1 imp4.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
2 impexp 261 . 2 (((𝜒𝜃) → 𝜏) ↔ (𝜒 → (𝜃𝜏)))
31, 2syl6ibr 161 1 (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  imp4b  348  imp4d  350  imp55  359  imp511  360  equs5or  1823  reuss2  3407  tfrlem9  6298  facwordi  10674  ndvdssub  11889  neibl  13285
  Copyright terms: Public domain W3C validator