ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facwordi GIF version

Theorem facwordi 10723
Description: Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
facwordi ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))

Proof of Theorem facwordi
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4009 . . . . . 6 (𝑗 = 0 → (𝑀𝑗𝑀 ≤ 0))
21anbi2d 464 . . . . 5 (𝑗 = 0 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ 0)))
3 fveq2 5517 . . . . . 6 (𝑗 = 0 → (!‘𝑗) = (!‘0))
43breq2d 4017 . . . . 5 (𝑗 = 0 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘0)))
52, 4imbi12d 234 . . . 4 (𝑗 = 0 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))))
6 breq2 4009 . . . . . 6 (𝑗 = 𝑘 → (𝑀𝑗𝑀𝑘))
76anbi2d 464 . . . . 5 (𝑗 = 𝑘 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑘)))
8 fveq2 5517 . . . . . 6 (𝑗 = 𝑘 → (!‘𝑗) = (!‘𝑘))
98breq2d 4017 . . . . 5 (𝑗 = 𝑘 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑘)))
107, 9imbi12d 234 . . . 4 (𝑗 = 𝑘 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘))))
11 breq2 4009 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑀𝑗𝑀 ≤ (𝑘 + 1)))
1211anbi2d 464 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1))))
13 fveq2 5517 . . . . . 6 (𝑗 = (𝑘 + 1) → (!‘𝑗) = (!‘(𝑘 + 1)))
1413breq2d 4017 . . . . 5 (𝑗 = (𝑘 + 1) → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
1512, 14imbi12d 234 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
16 breq2 4009 . . . . . 6 (𝑗 = 𝑁 → (𝑀𝑗𝑀𝑁))
1716anbi2d 464 . . . . 5 (𝑗 = 𝑁 → ((𝑀 ∈ ℕ0𝑀𝑗) ↔ (𝑀 ∈ ℕ0𝑀𝑁)))
18 fveq2 5517 . . . . . 6 (𝑗 = 𝑁 → (!‘𝑗) = (!‘𝑁))
1918breq2d 4017 . . . . 5 (𝑗 = 𝑁 → ((!‘𝑀) ≤ (!‘𝑗) ↔ (!‘𝑀) ≤ (!‘𝑁)))
2017, 19imbi12d 234 . . . 4 (𝑗 = 𝑁 → (((𝑀 ∈ ℕ0𝑀𝑗) → (!‘𝑀) ≤ (!‘𝑗)) ↔ ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))))
21 nn0le0eq0 9207 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
2221biimpa 296 . . . . . 6 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → 𝑀 = 0)
2322fveq2d 5521 . . . . 5 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) = (!‘0))
24 fac0 10711 . . . . . . 7 (!‘0) = 1
25 1re 7959 . . . . . . 7 1 ∈ ℝ
2624, 25eqeltri 2250 . . . . . 6 (!‘0) ∈ ℝ
2726leidi 8445 . . . . 5 (!‘0) ≤ (!‘0)
2823, 27eqbrtrdi 4044 . . . 4 ((𝑀 ∈ ℕ0𝑀 ≤ 0) → (!‘𝑀) ≤ (!‘0))
29 impexp 263 . . . . 5 (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) ↔ (𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))))
30 simpl 109 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
3130nn0zd 9376 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑀 ∈ ℤ)
32 peano2nn0 9219 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
3332adantl 277 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
3433nn0zd 9376 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
35 zleloe 9303 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
3631, 34, 35syl2anc 411 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) ↔ (𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1))))
37 nn0leltp1 9319 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘𝑀 < (𝑘 + 1)))
38 faccl 10718 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
3938nnred 8935 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℝ)
40 nn0re 9188 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
41 peano2re 8096 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
4338nnnn0d 9232 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ0)
4443nn0ge0d 9235 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 0 ≤ (!‘𝑘))
45 nn0p1nn 9218 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
4645nnge1d 8965 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 1 ≤ (𝑘 + 1))
4739, 42, 44, 46lemulge11d 8897 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ ((!‘𝑘) · (𝑘 + 1)))
48 facp1 10713 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
4947, 48breqtrrd 4033 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
5049adantl 277 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ≤ (!‘(𝑘 + 1)))
51 faccl 10718 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℕ)
5251nnred 8935 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (!‘𝑀) ∈ ℝ)
5352adantr 276 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑀) ∈ ℝ)
5439adantl 277 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
5532faccld 10719 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℕ)
5655nnred 8935 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) ∈ ℝ)
5756adantl 277 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑘 + 1)) ∈ ℝ)
58 letr 8043 . . . . . . . . . . . . . . . . 17 (((!‘𝑀) ∈ ℝ ∧ (!‘𝑘) ∈ ℝ ∧ (!‘(𝑘 + 1)) ∈ ℝ) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
5953, 54, 57, 58syl3anc 1238 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑀) ≤ (!‘𝑘) ∧ (!‘𝑘) ≤ (!‘(𝑘 + 1))) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6050, 59mpan2d 428 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑀) ≤ (!‘𝑘) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6160imim2d 54 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀𝑘 → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6261com23 78 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀𝑘 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
6337, 62sylbird 170 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 < (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
64 fveq2 5517 . . . . . . . . . . . . . . 15 (𝑀 = (𝑘 + 1) → (!‘𝑀) = (!‘(𝑘 + 1)))
6552leidd 8474 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (!‘𝑀) ≤ (!‘𝑀))
66 breq2 4009 . . . . . . . . . . . . . . . 16 ((!‘𝑀) = (!‘(𝑘 + 1)) → ((!‘𝑀) ≤ (!‘𝑀) ↔ (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6765, 66syl5ibcom 155 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ0 → ((!‘𝑀) = (!‘(𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6864, 67syl5 32 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
6968adantr 276 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))
7069a1dd 48 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 = (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7163, 70jaod 717 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑀 < (𝑘 + 1) ∨ 𝑀 = (𝑘 + 1)) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7236, 71sylbid 150 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7372ex 115 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑘 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7473com13 80 . . . . . . . 8 (𝑀 ≤ (𝑘 + 1) → (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7574com4l 84 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ((𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘)) → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7675a2d 26 . . . . . 6 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → (𝑀 ∈ ℕ0 → (𝑀 ≤ (𝑘 + 1) → (!‘𝑀) ≤ (!‘(𝑘 + 1))))))
7776imp4a 349 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → (𝑀𝑘 → (!‘𝑀) ≤ (!‘𝑘))) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
7829, 77biimtrid 152 . . . 4 (𝑘 ∈ ℕ0 → (((𝑀 ∈ ℕ0𝑀𝑘) → (!‘𝑀) ≤ (!‘𝑘)) → ((𝑀 ∈ ℕ0𝑀 ≤ (𝑘 + 1)) → (!‘𝑀) ≤ (!‘(𝑘 + 1)))))
795, 10, 15, 20, 28, 78nn0ind 9370 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁)))
80793impib 1201 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
81803com12 1207 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (!‘𝑀) ≤ (!‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4005  cfv 5218  (class class class)co 5878  cr 7813  0cc0 7814  1c1 7815   + caddc 7817   · cmul 7819   < clt 7995  cle 7996  0cn0 9179  cz 9256  !cfa 10708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-frec 6395  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-seqfrec 10449  df-fac 10709
This theorem is referenced by:  facavg  10729
  Copyright terms: Public domain W3C validator