ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuss2 GIF version

Theorem reuss2 3402
Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
reuss2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reuss2
StepHypRef Expression
1 df-rex 2450 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 df-reu 2451 . . 3 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥(𝑥𝐵𝜓))
31, 2anbi12i 456 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓)))
4 df-ral 2449 . . . . . . 7 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
5 ssel 3136 . . . . . . . . . . . . . 14 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
6 anim12 342 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑥𝐵) ∧ (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
75, 6sylan 281 . . . . . . . . . . . . 13 ((𝐴𝐵 ∧ (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
87exp4b 365 . . . . . . . . . . . 12 (𝐴𝐵 → ((𝜑𝜓) → (𝑥𝐴 → (𝜑 → (𝑥𝐵𝜓)))))
98com23 78 . . . . . . . . . . 11 (𝐴𝐵 → (𝑥𝐴 → ((𝜑𝜓) → (𝜑 → (𝑥𝐵𝜓)))))
109a2d 26 . . . . . . . . . 10 (𝐴𝐵 → ((𝑥𝐴 → (𝜑𝜓)) → (𝑥𝐴 → (𝜑 → (𝑥𝐵𝜓)))))
1110imp4a 347 . . . . . . . . 9 (𝐴𝐵 → ((𝑥𝐴 → (𝜑𝜓)) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))))
1211alimdv 1867 . . . . . . . 8 (𝐴𝐵 → (∀𝑥(𝑥𝐴 → (𝜑𝜓)) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))))
1312imp 123 . . . . . . 7 ((𝐴𝐵 ∧ ∀𝑥(𝑥𝐴 → (𝜑𝜓))) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
144, 13sylan2b 285 . . . . . 6 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)))
15 euimmo 2081 . . . . . 6 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)) → (∃!𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
1614, 15syl 14 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∃!𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
17 eu5 2061 . . . . . 6 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
1817simplbi2 383 . . . . 5 (∃𝑥(𝑥𝐴𝜑) → (∃*𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
1916, 18syl9 72 . . . 4 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → (∃𝑥(𝑥𝐴𝜑) → (∃!𝑥(𝑥𝐵𝜓) → ∃!𝑥(𝑥𝐴𝜑))))
2019imp32 255 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓))) → ∃!𝑥(𝑥𝐴𝜑))
21 df-reu 2451 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2220, 21sylibr 133 . 2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜓))) → ∃!𝑥𝐴 𝜑)
233, 22sylan2b 285 1 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wex 1480  ∃!weu 2014  ∃*wmo 2015  wcel 2136  wral 2444  wrex 2445  ∃!wreu 2446  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-rex 2450  df-reu 2451  df-in 3122  df-ss 3129
This theorem is referenced by:  reuss  3403  reuun1  3404  riotass2  5824
  Copyright terms: Public domain W3C validator