| Step | Hyp | Ref
 | Expression | 
| 1 |   | a9e 1710 | 
. 2
⊢
∃𝑧 𝑧 = 𝑦 | 
| 2 |   | dveeq2or 1830 | 
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦) | 
| 3 |   | nfnf1 1558 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥Ⅎ𝑥 𝑧 = 𝑦 | 
| 4 | 3 | nfri 1533 | 
. . . . . . . . . 10
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥Ⅎ𝑥 𝑧 = 𝑦) | 
| 5 |   | ax11v 1841 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | 
| 6 |   | equequ2 1727 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | 
| 7 | 6 | adantl 277 | 
. . . . . . . . . . . . . 14
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | 
| 8 |   | nfr 1532 | 
. . . . . . . . . . . . . . . . 17
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | 
| 9 | 8 | imp 124 | 
. . . . . . . . . . . . . . . 16
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦) | 
| 10 |   | hba1 1554 | 
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 𝑧 = 𝑦 → ∀𝑥∀𝑥 𝑧 = 𝑦) | 
| 11 | 6 | imbi1d 231 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) | 
| 12 | 11 | sps 1551 | 
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) | 
| 13 | 10, 12 | albidh 1494 | 
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 14 | 9, 13 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 15 | 14 | imbi2d 230 | 
. . . . . . . . . . . . . 14
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 16 | 7, 15 | imbi12d 234 | 
. . . . . . . . . . . . 13
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 17 | 5, 16 | mpbii 148 | 
. . . . . . . . . . . 12
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 18 | 17 | ex 115 | 
. . . . . . . . . . 11
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 19 | 18 | imp4a 349 | 
. . . . . . . . . 10
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 20 | 4, 19 | alrimih 1483 | 
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 21 |   | 19.21t 1596 | 
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) ↔ (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 22 | 20, 21 | mpbid 147 | 
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 23 |   | hba1 1554 | 
. . . . . . . . 9
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) | 
| 24 | 23 | 19.23h 1512 | 
. . . . . . . 8
⊢
(∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | 
| 25 | 22, 24 | imbitrdi 161 | 
. . . . . . 7
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 26 | 25 | orim2i 762 | 
. . . . . 6
⊢
((∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 27 | 2, 26 | ax-mp 5 | 
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 28 |   | pm2.76 809 | 
. . . . 5
⊢
((∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) → ((∀𝑥 𝑥 = 𝑦 ∨ 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) | 
| 29 | 27, 28 | ax-mp 5 | 
. . . 4
⊢
((∀𝑥 𝑥 = 𝑦 ∨ 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 30 | 29 | olcs 737 | 
. . 3
⊢ (𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 31 | 30 | exlimiv 1612 | 
. 2
⊢
(∃𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | 
| 32 | 1, 31 | ax-mp 5 | 
1
⊢
(∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |