ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5or GIF version

Theorem equs5or 1818
Description: Lemma used in proofs of substitution properties. Like equs5 1817 but, in intuitionistic logic, replacing negation and implication with disjunction makes this a stronger result. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
equs5or (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem equs5or
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 a9e 1684 . 2 𝑧 𝑧 = 𝑦
2 dveeq2or 1804 . . . . . 6 (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
3 nfnf1 1532 . . . . . . . . . . 11 𝑥𝑥 𝑧 = 𝑦
43nfri 1507 . . . . . . . . . 10 (Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
5 ax11v 1815 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
6 equequ2 1701 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
76adantl 275 . . . . . . . . . . . . . 14 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑧𝑥 = 𝑦))
8 nfr 1506 . . . . . . . . . . . . . . . . 17 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
98imp 123 . . . . . . . . . . . . . . . 16 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦)
10 hba1 1528 . . . . . . . . . . . . . . . . 17 (∀𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
116imbi1d 230 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
1211sps 1525 . . . . . . . . . . . . . . . . 17 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
1310, 12albidh 1468 . . . . . . . . . . . . . . . 16 (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
149, 13syl 14 . . . . . . . . . . . . . . 15 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
1514imbi2d 229 . . . . . . . . . . . . . 14 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
167, 15imbi12d 233 . . . . . . . . . . . . 13 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
175, 16mpbii 147 . . . . . . . . . . . 12 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
1817ex 114 . . . . . . . . . . 11 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
1918imp4a 347 . . . . . . . . . 10 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
204, 19alrimih 1457 . . . . . . . . 9 (Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
21 19.21t 1570 . . . . . . . . 9 (Ⅎ𝑥 𝑧 = 𝑦 → (∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))) ↔ (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))))
2220, 21mpbid 146 . . . . . . . 8 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
23 hba1 1528 . . . . . . . . 9 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥𝑥(𝑥 = 𝑦𝜑))
242319.23h 1486 . . . . . . . 8 (∀𝑥((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
2522, 24syl6ib 160 . . . . . . 7 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
2625orim2i 751 . . . . . 6 ((∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))))
272, 26ax-mp 5 . . . . 5 (∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
28 pm2.76 798 . . . . 5 ((∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))) → ((∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))))
2927, 28ax-mp 5 . . . 4 ((∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
3029olcs 726 . . 3 (𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
3130exlimiv 1586 . 2 (∃𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
321, 31ax-mp 5 1 (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wal 1341  wnf 1448  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sb4or  1821
  Copyright terms: Public domain W3C validator