ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5or GIF version

Theorem equs5or 1830
Description: Lemma used in proofs of substitution properties. Like equs5 1829 but, in intuitionistic logic, replacing negation and implication with disjunction makes this a stronger result. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
equs5or (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem equs5or
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 a9e 1696 . 2 𝑧 𝑧 = 𝑦
2 dveeq2or 1816 . . . . . 6 (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦)
3 nfnf1 1544 . . . . . . . . . . 11 𝑥𝑥 𝑧 = 𝑦
43nfri 1519 . . . . . . . . . 10 (Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
5 ax11v 1827 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
6 equequ2 1713 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
76adantl 277 . . . . . . . . . . . . . 14 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑧𝑥 = 𝑦))
8 nfr 1518 . . . . . . . . . . . . . . . . 17 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
98imp 124 . . . . . . . . . . . . . . . 16 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦)
10 hba1 1540 . . . . . . . . . . . . . . . . 17 (∀𝑥 𝑧 = 𝑦 → ∀𝑥𝑥 𝑧 = 𝑦)
116imbi1d 231 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
1211sps 1537 . . . . . . . . . . . . . . . . 17 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
1310, 12albidh 1480 . . . . . . . . . . . . . . . 16 (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
149, 13syl 14 . . . . . . . . . . . . . . 15 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
1514imbi2d 230 . . . . . . . . . . . . . 14 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
167, 15imbi12d 234 . . . . . . . . . . . . 13 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
175, 16mpbii 148 . . . . . . . . . . . 12 ((Ⅎ𝑥 𝑧 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
1817ex 115 . . . . . . . . . . 11 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
1918imp4a 349 . . . . . . . . . 10 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
204, 19alrimih 1469 . . . . . . . . 9 (Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
21 19.21t 1582 . . . . . . . . 9 (Ⅎ𝑥 𝑧 = 𝑦 → (∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))) ↔ (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))))
2220, 21mpbid 147 . . . . . . . 8 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
23 hba1 1540 . . . . . . . . 9 (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥𝑥(𝑥 = 𝑦𝜑))
242319.23h 1498 . . . . . . . 8 (∀𝑥((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
2522, 24imbitrdi 161 . . . . . . 7 (Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
2625orim2i 761 . . . . . 6 ((∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))))
272, 26ax-mp 5 . . . . 5 (∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
28 pm2.76 808 . . . . 5 ((∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))) → ((∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))))
2927, 28ax-mp 5 . . . 4 ((∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
3029olcs 736 . . 3 (𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
3130exlimiv 1598 . 2 (∃𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))))
321, 31ax-mp 5 1 (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wal 1351  wnf 1460  wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  sb4or  1833
  Copyright terms: Public domain W3C validator