Step | Hyp | Ref
| Expression |
1 | | a9e 1684 |
. 2
⊢
∃𝑧 𝑧 = 𝑦 |
2 | | dveeq2or 1804 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦) |
3 | | nfnf1 1532 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥Ⅎ𝑥 𝑧 = 𝑦 |
4 | 3 | nfri 1507 |
. . . . . . . . . 10
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥Ⅎ𝑥 𝑧 = 𝑦) |
5 | | ax11v 1815 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
6 | | equequ2 1701 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
7 | 6 | adantl 275 |
. . . . . . . . . . . . . 14
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
8 | | nfr 1506 |
. . . . . . . . . . . . . . . . 17
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
9 | 8 | imp 123 |
. . . . . . . . . . . . . . . 16
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦) |
10 | | hba1 1528 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 𝑧 = 𝑦 → ∀𝑥∀𝑥 𝑧 = 𝑦) |
11 | 6 | imbi1d 230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) |
12 | 11 | sps 1525 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) |
13 | 10, 12 | albidh 1468 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
14 | 9, 13 | syl 14 |
. . . . . . . . . . . . . . 15
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
15 | 14 | imbi2d 229 |
. . . . . . . . . . . . . 14
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
16 | 7, 15 | imbi12d 233 |
. . . . . . . . . . . . 13
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
17 | 5, 16 | mpbii 147 |
. . . . . . . . . . . 12
⊢
((Ⅎ𝑥 𝑧 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
18 | 17 | ex 114 |
. . . . . . . . . . 11
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
19 | 18 | imp4a 347 |
. . . . . . . . . 10
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
20 | 4, 19 | alrimih 1457 |
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → ∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
21 | | 19.21t 1570 |
. . . . . . . . 9
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (∀𝑥(𝑧 = 𝑦 → ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) ↔ (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
22 | 20, 21 | mpbid 146 |
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
23 | | hba1 1528 |
. . . . . . . . 9
⊢
(∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥∀𝑥(𝑥 = 𝑦 → 𝜑)) |
24 | 23 | 19.23h 1486 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
25 | 22, 24 | syl6ib 160 |
. . . . . . 7
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
26 | 25 | orim2i 751 |
. . . . . 6
⊢
((∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
27 | 2, 26 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
28 | | pm2.76 798 |
. . . . 5
⊢
((∀𝑥 𝑥 = 𝑦 ∨ (𝑧 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) → ((∀𝑥 𝑥 = 𝑦 ∨ 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
29 | 27, 28 | ax-mp 5 |
. . . 4
⊢
((∀𝑥 𝑥 = 𝑦 ∨ 𝑧 = 𝑦) → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
30 | 29 | olcs 726 |
. . 3
⊢ (𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
31 | 30 | exlimiv 1586 |
. 2
⊢
(∃𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
32 | 1, 31 | ax-mp 5 |
1
⊢
(∀𝑥 𝑥 = 𝑦 ∨ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |