| Step | Hyp | Ref
| Expression |
| 1 | | mopni.1 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) |
| 2 | 1 | mopntop 14680 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 3 | 2 | adantr 276 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ Top) |
| 4 | 1 | mopnuni 14681 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 5 | 4 | eleq2d 2266 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑃 ∈ 𝑋 ↔ 𝑃 ∈ ∪ 𝐽)) |
| 6 | 5 | biimpa 296 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ ∪ 𝐽) |
| 7 | | eqid 2196 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 8 | 7 | isneip 14382 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽)
→ (𝑁 ∈
((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
| 9 | 3, 6, 8 | syl2anc 411 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
| 10 | 4 | sseq2d 3213 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑁 ⊆ 𝑋 ↔ 𝑁 ⊆ ∪ 𝐽)) |
| 11 | 10 | adantr 276 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ⊆ 𝑋 ↔ 𝑁 ⊆ ∪ 𝐽)) |
| 12 | 11 | anbi1d 465 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
| 13 | 1 | mopni2 14719 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦) |
| 14 | | sstr2 3190 |
. . . . . . . . . . 11
⊢ ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑦 ⊆ 𝑁 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
| 15 | 14 | com12 30 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝑁 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
| 16 | 15 | reximdv 2598 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝑁 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
| 17 | 13, 16 | syl5com 29 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦) → (𝑦 ⊆ 𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
| 18 | 17 | 3exp 1204 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∈ 𝐽 → (𝑃 ∈ 𝑦 → (𝑦 ⊆ 𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))) |
| 19 | 18 | imp4a 349 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∈ 𝐽 → ((𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
| 20 | 19 | ad2antrr 488 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (𝑦 ∈ 𝐽 → ((𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
| 21 | 20 | rexlimdv 2613 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
| 22 | | rpxr 9736 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 23 | 1 | blopn 14726 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽) |
| 24 | 22, 23 | syl3an3 1284 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽) |
| 25 | | blcntr 14652 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) |
| 26 | | eleq2 2260 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))) |
| 27 | | sseq1 3206 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑦 ⊆ 𝑁 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
| 28 | 26, 27 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑃(ball‘𝐷)𝑟) → ((𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
| 29 | 28 | rspcev 2868 |
. . . . . . . . 9
⊢ (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)) |
| 30 | 29 | expr 375 |
. . . . . . . 8
⊢ (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽 ∧ 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
| 31 | 24, 25, 30 | syl2anc 411 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
| 32 | 31 | 3expia 1207 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑟 ∈ ℝ+ → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
| 33 | 32 | rexlimdv 2613 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
| 34 | 33 | adantr 276 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
| 35 | 21, 34 | impbid 129 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
| 36 | 35 | pm5.32da 452 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
| 37 | 9, 12, 36 | 3bitr2d 216 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |