Step | Hyp | Ref
| Expression |
1 | | mopni.1 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) |
2 | 1 | mopntop 13238 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
3 | 2 | adantr 274 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝐽 ∈ Top) |
4 | 1 | mopnuni 13239 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
5 | 4 | eleq2d 2240 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑃 ∈ 𝑋 ↔ 𝑃 ∈ ∪ 𝐽)) |
6 | 5 | biimpa 294 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → 𝑃 ∈ ∪ 𝐽) |
7 | | eqid 2170 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
8 | 7 | isneip 12940 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽)
→ (𝑁 ∈
((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
9 | 3, 6, 8 | syl2anc 409 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
10 | 4 | sseq2d 3177 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑁 ⊆ 𝑋 ↔ 𝑁 ⊆ ∪ 𝐽)) |
11 | 10 | adantr 274 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ⊆ 𝑋 ↔ 𝑁 ⊆ ∪ 𝐽)) |
12 | 11 | anbi1d 462 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
13 | 1 | mopni2 13277 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦) |
14 | | sstr2 3154 |
. . . . . . . . . . 11
⊢ ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑦 ⊆ 𝑁 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
15 | 14 | com12 30 |
. . . . . . . . . 10
⊢ (𝑦 ⊆ 𝑁 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
16 | 15 | reximdv 2571 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝑁 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
17 | 13, 16 | syl5com 29 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦) → (𝑦 ⊆ 𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
18 | 17 | 3exp 1197 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∈ 𝐽 → (𝑃 ∈ 𝑦 → (𝑦 ⊆ 𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))) |
19 | 18 | imp4a 347 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∈ 𝐽 → ((𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
20 | 19 | ad2antrr 485 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (𝑦 ∈ 𝐽 → ((𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
21 | 20 | rexlimdv 2586 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
22 | | rpxr 9618 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
23 | 1 | blopn 13284 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽) |
24 | 22, 23 | syl3an3 1268 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽) |
25 | | blcntr 13210 |
. . . . . . . 8
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) |
26 | | eleq2 2234 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))) |
27 | | sseq1 3170 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑦 ⊆ 𝑁 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
28 | 26, 27 | anbi12d 470 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑃(ball‘𝐷)𝑟) → ((𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
29 | 28 | rspcev 2834 |
. . . . . . . . 9
⊢ (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)) |
30 | 29 | expr 373 |
. . . . . . . 8
⊢ (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽 ∧ 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
31 | 24, 25, 30 | syl2anc 409 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
32 | 31 | 3expia 1200 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑟 ∈ ℝ+ → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)))) |
33 | 32 | rexlimdv 2586 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
34 | 33 | adantr 274 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁))) |
35 | 21, 34 | impbid 128 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑁 ⊆ 𝑋) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) |
36 | 35 | pm5.32da 449 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → ((𝑁 ⊆ 𝑋 ∧ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁)) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
37 | 9, 12, 36 | 3bitr2d 215 |
1
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |