ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neibl GIF version

Theorem neibl 13131
Description: The neighborhoods around a point 𝑃 of a metric space are those subsets containing a ball around 𝑃. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
neibl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
Distinct variable groups:   𝐷,𝑟   𝐽,𝑟   𝑁,𝑟   𝑃,𝑟   𝑋,𝑟

Proof of Theorem neibl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 13084 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → 𝐽 ∈ Top)
41mopnuni 13085 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
54eleq2d 2236 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑃𝑋𝑃 𝐽))
65biimpa 294 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → 𝑃 𝐽)
7 eqid 2165 . . . 4 𝐽 = 𝐽
87isneip 12786 . . 3 ((𝐽 ∈ Top ∧ 𝑃 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
93, 6, 8syl2anc 409 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
104sseq2d 3172 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑁𝑋𝑁 𝐽))
1110adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁𝑋𝑁 𝐽))
1211anbi1d 461 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
131mopni2 13123 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑃𝑦) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦)
14 sstr2 3149 . . . . . . . . . . 11 ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑦𝑁 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1514com12 30 . . . . . . . . . 10 (𝑦𝑁 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1615reximdv 2567 . . . . . . . . 9 (𝑦𝑁 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1713, 16syl5com 29 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑃𝑦) → (𝑦𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
18173exp 1192 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))))
1918imp4a 347 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦𝐽 → ((𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2019ad2antrr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (𝑦𝐽 → ((𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2120rexlimdv 2582 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑦𝐽 (𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
22 rpxr 9597 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
231blopn 13130 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽)
2422, 23syl3an3 1263 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽)
25 blcntr 13056 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
26 eleq2 2230 . . . . . . . . . . 11 (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑃𝑦𝑃 ∈ (𝑃(ball‘𝐷)𝑟)))
27 sseq1 3165 . . . . . . . . . . 11 (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑦𝑁 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
2826, 27anbi12d 465 . . . . . . . . . 10 (𝑦 = (𝑃(ball‘𝐷)𝑟) → ((𝑃𝑦𝑦𝑁) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2928rspcev 2830 . . . . . . . . 9 (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))
3029expr 373 . . . . . . . 8 (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3124, 25, 30syl2anc 409 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
32313expia 1195 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑟 ∈ ℝ+ → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
3332rexlimdv 2582 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3433adantr 274 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3521, 34impbid 128 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑦𝐽 (𝑃𝑦𝑦𝑁) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
3635pm5.32da 448 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
379, 12, 363bitr2d 215 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wrex 2445  wss 3116  {csn 3576   cuni 3789  cfv 5188  (class class class)co 5842  *cxr 7932  +crp 9589  ∞Metcxmet 12620  ballcbl 12622  MetOpencmopn 12625  Topctop 12635  neicnei 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-nei 12779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator