Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  neibl GIF version

Theorem neibl 12719
 Description: The neighborhoods around a point 𝑃 of a metric space are those subsets containing a ball around 𝑃. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
neibl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
Distinct variable groups:   𝐷,𝑟   𝐽,𝑟   𝑁,𝑟   𝑃,𝑟   𝑋,𝑟

Proof of Theorem neibl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 12672 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → 𝐽 ∈ Top)
41mopnuni 12673 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
54eleq2d 2210 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑃𝑋𝑃 𝐽))
65biimpa 294 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → 𝑃 𝐽)
7 eqid 2140 . . . 4 𝐽 = 𝐽
87isneip 12374 . . 3 ((𝐽 ∈ Top ∧ 𝑃 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
93, 6, 8syl2anc 409 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
104sseq2d 3133 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑁𝑋𝑁 𝐽))
1110adantr 274 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁𝑋𝑁 𝐽))
1211anbi1d 461 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
131mopni2 12711 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑃𝑦) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦)
14 sstr2 3110 . . . . . . . . . . 11 ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑦𝑁 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1514com12 30 . . . . . . . . . 10 (𝑦𝑁 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1615reximdv 2537 . . . . . . . . 9 (𝑦𝑁 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1713, 16syl5com 29 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑃𝑦) → (𝑦𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
18173exp 1181 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))))
1918imp4a 347 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦𝐽 → ((𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2019ad2antrr 480 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (𝑦𝐽 → ((𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2120rexlimdv 2552 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑦𝐽 (𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
22 rpxr 9498 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
231blopn 12718 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽)
2422, 23syl3an3 1252 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽)
25 blcntr 12644 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
26 eleq2 2204 . . . . . . . . . . 11 (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑃𝑦𝑃 ∈ (𝑃(ball‘𝐷)𝑟)))
27 sseq1 3126 . . . . . . . . . . 11 (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑦𝑁 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
2826, 27anbi12d 465 . . . . . . . . . 10 (𝑦 = (𝑃(ball‘𝐷)𝑟) → ((𝑃𝑦𝑦𝑁) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2928rspcev 2794 . . . . . . . . 9 (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))
3029expr 373 . . . . . . . 8 (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3124, 25, 30syl2anc 409 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
32313expia 1184 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑟 ∈ ℝ+ → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
3332rexlimdv 2552 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3433adantr 274 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3521, 34impbid 128 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑦𝐽 (𝑃𝑦𝑦𝑁) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
3635pm5.32da 448 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
379, 12, 363bitr2d 215 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  ∃wrex 2418   ⊆ wss 3077  {csn 3533  ∪ cuni 3745  ‘cfv 5132  (class class class)co 5783  ℝ*cxr 7843  ℝ+crp 9490  ∞Metcxmet 12208  ballcbl 12210  MetOpencmopn 12213  Topctop 12223  neicnei 12366 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782  ax-arch 7783  ax-caucvg 7784 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-isom 5141  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-recs 6211  df-frec 6297  df-map 6553  df-sup 6881  df-inf 6882  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-3 8824  df-4 8825  df-n0 9022  df-z 9099  df-uz 9371  df-q 9459  df-rp 9491  df-xneg 9609  df-xadd 9610  df-seqfrec 10270  df-exp 10344  df-cj 10666  df-re 10667  df-im 10668  df-rsqrt 10822  df-abs 10823  df-topgen 12200  df-psmet 12215  df-xmet 12216  df-bl 12218  df-mopn 12219  df-top 12224  df-topon 12237  df-bases 12269  df-nei 12367 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator