| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1206 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3anl2 1345 ordin 4450 ordsuc 4629 omv 6564 oeiv 6565 omv2 6574 1idprl 7738 muladd11 8240 negsub 8355 subneg 8356 ltaddneg 8532 muleqadd 8776 diveqap1 8813 conjmulap 8837 nnsub 9110 addltmul 9309 zltp1le 9462 gtndiv 9503 eluzp1m1 9707 xnn0le2is012 10023 divelunit 10159 fznatpl1 10233 flqbi2 10471 flqdiv 10503 frecfzen2 10609 nn0ennn 10615 seqshft2g 10664 seqf1oglem1 10701 faclbnd3 10925 ccatrid 11101 shftfvalg 11244 ovshftex 11245 shftfval 11247 abs2dif 11532 cos2t 12176 sin01gt0 12188 cos01gt0 12189 demoivre 12199 demoivreALT 12200 omeo 12324 gcd0id 12415 sqgcd 12465 isprm3 12555 eulerthlemth 12669 pczpre 12735 pcrec 12746 setscom 12987 setsslid 12998 setsslnid 12999 mulgm1 13593 abssinper 15433 lgs1 15636 |
| Copyright terms: Public domain | W3C validator |