![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp3an2 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1203 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: mp3anl2 1332 ordin 4387 ordsuc 4564 omv 6459 oeiv 6460 omv2 6469 1idprl 7592 muladd11 8093 negsub 8208 subneg 8209 ltaddneg 8384 muleqadd 8628 diveqap1 8665 conjmulap 8689 nnsub 8961 addltmul 9158 zltp1le 9310 gtndiv 9351 eluzp1m1 9554 xnn0le2is012 9869 divelunit 10005 fznatpl1 10079 flqbi2 10294 flqdiv 10324 frecfzen2 10430 nn0ennn 10436 faclbnd3 10726 shftfvalg 10830 ovshftex 10831 shftfval 10833 abs2dif 11118 cos2t 11761 sin01gt0 11772 cos01gt0 11773 demoivre 11783 demoivreALT 11784 omeo 11906 gcd0id 11983 sqgcd 12033 isprm3 12121 eulerthlemth 12235 pczpre 12300 pcrec 12311 setscom 12505 setsslid 12516 setsslnid 12517 mulgm1 13013 abssinper 14428 lgs1 14606 |
Copyright terms: Public domain | W3C validator |