| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1227 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: mp3anl2 1366 ordin 4476 ordsuc 4655 omv 6601 oeiv 6602 omv2 6611 1idprl 7777 muladd11 8279 negsub 8394 subneg 8395 ltaddneg 8571 muleqadd 8815 diveqap1 8852 conjmulap 8876 nnsub 9149 addltmul 9348 zltp1le 9501 gtndiv 9542 eluzp1m1 9746 xnn0le2is012 10062 divelunit 10198 fznatpl1 10272 flqbi2 10511 flqdiv 10543 frecfzen2 10649 nn0ennn 10655 seqshft2g 10704 seqf1oglem1 10741 faclbnd3 10965 ccatrid 11142 shftfvalg 11329 ovshftex 11330 shftfval 11332 abs2dif 11617 cos2t 12261 sin01gt0 12273 cos01gt0 12274 demoivre 12284 demoivreALT 12285 omeo 12409 gcd0id 12500 sqgcd 12550 isprm3 12640 eulerthlemth 12754 pczpre 12820 pcrec 12831 setscom 13072 setsslid 13083 setsslnid 13084 mulgm1 13679 abssinper 15520 lgs1 15723 |
| Copyright terms: Public domain | W3C validator |