| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1206 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: mp3anl2 1345 ordin 4433 ordsuc 4612 omv 6543 oeiv 6544 omv2 6553 1idprl 7705 muladd11 8207 negsub 8322 subneg 8323 ltaddneg 8499 muleqadd 8743 diveqap1 8780 conjmulap 8804 nnsub 9077 addltmul 9276 zltp1le 9429 gtndiv 9470 eluzp1m1 9674 xnn0le2is012 9990 divelunit 10126 fznatpl1 10200 flqbi2 10436 flqdiv 10468 frecfzen2 10574 nn0ennn 10580 seqshft2g 10629 seqf1oglem1 10666 faclbnd3 10890 ccatrid 11066 shftfvalg 11162 ovshftex 11163 shftfval 11165 abs2dif 11450 cos2t 12094 sin01gt0 12106 cos01gt0 12107 demoivre 12117 demoivreALT 12118 omeo 12242 gcd0id 12333 sqgcd 12383 isprm3 12473 eulerthlemth 12587 pczpre 12653 pcrec 12664 setscom 12905 setsslid 12916 setsslnid 12917 mulgm1 13511 abssinper 15351 lgs1 15554 |
| Copyright terms: Public domain | W3C validator |