Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp3an2 | GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 432 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: mp3anl2 1322 ordin 4363 ordsuc 4540 omv 6423 oeiv 6424 omv2 6433 1idprl 7531 muladd11 8031 negsub 8146 subneg 8147 ltaddneg 8322 muleqadd 8565 diveqap1 8601 conjmulap 8625 nnsub 8896 addltmul 9093 zltp1le 9245 gtndiv 9286 eluzp1m1 9489 xnn0le2is012 9802 divelunit 9938 fznatpl1 10011 flqbi2 10226 flqdiv 10256 frecfzen2 10362 nn0ennn 10368 faclbnd3 10656 shftfvalg 10760 ovshftex 10761 shftfval 10763 abs2dif 11048 cos2t 11691 sin01gt0 11702 cos01gt0 11703 demoivre 11713 demoivreALT 11714 omeo 11835 gcd0id 11912 sqgcd 11962 isprm3 12050 eulerthlemth 12164 pczpre 12229 pcrec 12240 setscom 12434 setsslid 12444 setsslnid 12445 abssinper 13417 lgs1 13595 |
Copyright terms: Public domain | W3C validator |