| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| mp3an2.1 | ⊢ 𝜓 |
| mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
| 2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1205 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 435 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3anl2 1343 ordin 4421 ordsuc 4600 omv 6522 oeiv 6523 omv2 6532 1idprl 7676 muladd11 8178 negsub 8293 subneg 8294 ltaddneg 8470 muleqadd 8714 diveqap1 8751 conjmulap 8775 nnsub 9048 addltmul 9247 zltp1le 9399 gtndiv 9440 eluzp1m1 9644 xnn0le2is012 9960 divelunit 10096 fznatpl1 10170 flqbi2 10400 flqdiv 10432 frecfzen2 10538 nn0ennn 10544 seqshft2g 10593 seqf1oglem1 10630 faclbnd3 10854 shftfvalg 11002 ovshftex 11003 shftfval 11005 abs2dif 11290 cos2t 11934 sin01gt0 11946 cos01gt0 11947 demoivre 11957 demoivreALT 11958 omeo 12082 gcd0id 12173 sqgcd 12223 isprm3 12313 eulerthlemth 12427 pczpre 12493 pcrec 12504 setscom 12745 setsslid 12756 setsslnid 12757 mulgm1 13350 abssinper 15190 lgs1 15393 |
| Copyright terms: Public domain | W3C validator |