Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfnot | GIF version |
Description: Given falsum, we can define the negation of a wff 𝜑 as the statement that a contradiction follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
dfnot | ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1355 | . 2 ⊢ ¬ ⊥ | |
2 | mtt 680 | . 2 ⊢ (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ⊥wfal 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: inegd 1367 pclem6 1369 alnex 1492 alexim 1638 difin 3364 indifdir 3383 recvguniq 10959 logbgcd1irr 13679 bj-axempty2 13929 |
Copyright terms: Public domain | W3C validator |