| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnot | GIF version | ||
| Description: Given falsum, we can define the negation of a wff 𝜑 as the statement that a contradiction follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| dfnot | ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1371 | . 2 ⊢ ¬ ⊥ | |
| 2 | mtt 686 | . 2 ⊢ (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ⊥wfal 1369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: inegd 1383 pclem6 1385 dcfrompeirce 1460 alnex 1513 alexim 1659 difin 3400 indifdir 3419 recvguniq 11160 logbgcd1irr 15203 bj-axempty2 15540 |
| Copyright terms: Public domain | W3C validator |