ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnot GIF version

Theorem dfnot 1361
Description: Given falsum, we can define the negation of a wff 𝜑 as the statement that a contradiction follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
Assertion
Ref Expression
dfnot 𝜑 ↔ (𝜑 → ⊥))

Proof of Theorem dfnot
StepHypRef Expression
1 fal 1350 . 2 ¬ ⊥
2 mtt 675 . 2 (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥)))
31, 2ax-mp 5 1 𝜑 ↔ (𝜑 → ⊥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wfal 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  inegd  1362  pclem6  1364  alnex  1487  alexim  1633  difin  3359  indifdir  3378  recvguniq  10937  logbgcd1irr  13525  bj-axempty2  13776
  Copyright terms: Public domain W3C validator