![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfnot | GIF version |
Description: Given falsum, we can define the negation of a wff 𝜑 as the statement that a contradiction follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
dfnot | ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1303 | . 2 ⊢ ¬ ⊥ | |
2 | mtt 648 | . 2 ⊢ (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥))) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ⊥wfal 1301 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-fal 1302 |
This theorem is referenced by: inegd 1315 pclem6 1317 alnex 1440 alexim 1588 difin 3252 indifdir 3271 recvguniq 10543 bj-axempty2 12502 |
Copyright terms: Public domain | W3C validator |