![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfnot | GIF version |
Description: Given falsum, we can define the negation of a wff 𝜑 as the statement that a contradiction follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
dfnot | ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1371 | . 2 ⊢ ¬ ⊥ | |
2 | mtt 686 | . 2 ⊢ (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ⊥wfal 1369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
This theorem is referenced by: inegd 1383 pclem6 1385 alnex 1510 alexim 1656 difin 3396 indifdir 3415 recvguniq 11139 logbgcd1irr 15099 bj-axempty2 15386 |
Copyright terms: Public domain | W3C validator |