Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfnot | GIF version |
Description: Given falsum, we can define the negation of a wff 𝜑 as the statement that a contradiction follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.) |
Ref | Expression |
---|---|
dfnot | ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fal 1350 | . 2 ⊢ ¬ ⊥ | |
2 | mtt 675 | . 2 ⊢ (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 ↔ (𝜑 → ⊥)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ⊥wfal 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: inegd 1362 pclem6 1364 alnex 1487 alexim 1633 difin 3359 indifdir 3378 recvguniq 10937 logbgcd1irr 13525 bj-axempty2 13776 |
Copyright terms: Public domain | W3C validator |