ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imnani GIF version

Theorem imnani 691
Description: Express implication in terms of conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.)
Hypothesis
Ref Expression
imnani.1 ¬ (𝜑𝜓)
Assertion
Ref Expression
imnani (𝜑 → ¬ 𝜓)

Proof of Theorem imnani
StepHypRef Expression
1 imnani.1 . 2 ¬ (𝜑𝜓)
2 imnan 690 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
31, 2mpbir 146 1 (𝜑 → ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mptnan  1423  eueq3dc  2913  dtruex  4560  canth  5831  nntri2  6497  nndcel  6503
  Copyright terms: Public domain W3C validator