| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.74i 180 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 693 sbcof2 1832 sblimv 1917 sbhb 1967 sblim 1984 2sb6 2011 sbcom2v 2012 2sb6rf 2017 eu1 2078 moabs 2102 mo3h 2106 moanim 2127 2moswapdc 2143 r2alf 2522 r19.21t 2580 rspc2gv 2888 reu2 2960 reu8 2968 2reuswapdc 2976 2rmorex 2978 dfdif3 3282 ssconb 3305 ssin 3394 reldisj 3511 ssundifim 3543 ralm 3563 unissb 3879 repizf2lem 4204 elirr 4588 en2lp 4601 tfi 4629 ssrel 4762 ssrel2 4764 fncnv 5339 fun11 5340 axcaucvglemres 8011 axpre-suploc 8014 suprzclex 9470 raluz2 9699 supinfneg 9715 infsupneg 9716 infssuzex 10374 bezoutlemmain 12261 isprm2 12381 lmres 14662 ivthdich 15067 limcdifap 15076 |
| Copyright terms: Public domain | W3C validator |