ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imbi2i GIF version

Theorem imbi2i 226
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.)
Hypothesis
Ref Expression
bi.a (𝜑𝜓)
Assertion
Ref Expression
imbi2i ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem imbi2i
StepHypRef Expression
1 bi.a . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝜒 → (𝜑𝜓))
32pm5.74i 180 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imbi12i  239  anidmdbi  398  nan  693  sbcof2  1824  sblimv  1909  sbhb  1959  sblim  1976  2sb6  2003  sbcom2v  2004  2sb6rf  2009  eu1  2070  moabs  2094  mo3h  2098  moanim  2119  2moswapdc  2135  r2alf  2514  r19.21t  2572  rspc2gv  2880  reu2  2952  reu8  2960  2reuswapdc  2968  2rmorex  2970  dfdif3  3274  ssconb  3297  ssin  3386  reldisj  3503  ssundifim  3535  ralm  3555  unissb  3870  repizf2lem  4195  elirr  4578  en2lp  4591  tfi  4619  ssrel  4752  ssrel2  4754  fncnv  5325  fun11  5326  axcaucvglemres  7985  axpre-suploc  7988  suprzclex  9443  raluz2  9672  supinfneg  9688  infsupneg  9689  infssuzex  10342  bezoutlemmain  12192  isprm2  12312  lmres  14592  ivthdich  14997  limcdifap  15006
  Copyright terms: Public domain W3C validator