| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.74i 180 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 696 sbcof2 1856 sblimv 1941 sbhb 1991 sblim 2008 2sb6 2035 sbcom2v 2036 2sb6rf 2041 eu1 2102 moabs 2127 mo3h 2131 moanim 2152 2moswapdc 2168 r2alf 2547 r19.21t 2605 rspc2gv 2919 reu2 2991 reu8 2999 2reuswapdc 3007 2rmorex 3009 dfdif3 3314 ssconb 3337 ssin 3426 reldisj 3543 ssundifim 3575 ralm 3595 unissb 3917 repizf2lem 4244 elirr 4632 en2lp 4645 tfi 4673 ssrel 4806 ssrel2 4808 fncnv 5386 fun11 5387 axcaucvglemres 8082 axpre-suploc 8085 suprzclex 9541 raluz2 9770 supinfneg 9786 infsupneg 9787 infssuzex 10448 bezoutlemmain 12514 isprm2 12634 lmres 14916 ivthdich 15321 limcdifap 15330 |
| Copyright terms: Public domain | W3C validator |