![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.74i 178 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: imbi12i 237 anidmdbi 390 nan 661 sbcof2 1738 sblimv 1822 sbhb 1864 sblim 1879 2sb6 1908 sbcom2v 1909 2sb6rf 1914 eu1 1973 moabs 1997 mo3h 2001 moanim 2022 2moswapdc 2038 r2alf 2395 r19.21t 2448 rspc2gv 2733 reu2 2803 reu8 2811 2reuswapdc 2819 2rmorex 2821 dfdif3 3110 ssconb 3133 ssin 3222 reldisj 3334 ssundifim 3366 ralm 3386 unissb 3683 repizf2lem 3996 elirr 4357 en2lp 4370 tfi 4397 ssrel 4526 ssrel2 4528 fncnv 5080 fun11 5081 axcaucvglemres 7432 suprzclex 8842 raluz2 9065 supinfneg 9081 infsupneg 9082 infssuzex 11219 bezoutlemmain 11261 isprm2 11373 |
Copyright terms: Public domain | W3C validator |