Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.74i 179 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imbi12i 238 anidmdbi 396 nan 682 sbcof2 1798 sblimv 1882 sbhb 1928 sblim 1945 2sb6 1972 sbcom2v 1973 2sb6rf 1978 eu1 2039 moabs 2063 mo3h 2067 moanim 2088 2moswapdc 2104 r2alf 2483 r19.21t 2541 rspc2gv 2842 reu2 2914 reu8 2922 2reuswapdc 2930 2rmorex 2932 dfdif3 3232 ssconb 3255 ssin 3344 reldisj 3460 ssundifim 3492 ralm 3513 unissb 3819 repizf2lem 4140 elirr 4518 en2lp 4531 tfi 4559 ssrel 4692 ssrel2 4694 fncnv 5254 fun11 5255 axcaucvglemres 7840 axpre-suploc 7843 suprzclex 9289 raluz2 9517 supinfneg 9533 infsupneg 9534 infssuzex 11882 bezoutlemmain 11931 isprm2 12049 lmres 12888 limcdifap 13271 |
Copyright terms: Public domain | W3C validator |