| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.74i 180 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 694 sbcof2 1834 sblimv 1919 sbhb 1969 sblim 1986 2sb6 2013 sbcom2v 2014 2sb6rf 2019 eu1 2080 moabs 2104 mo3h 2108 moanim 2129 2moswapdc 2145 r2alf 2524 r19.21t 2582 rspc2gv 2893 reu2 2965 reu8 2973 2reuswapdc 2981 2rmorex 2983 dfdif3 3287 ssconb 3310 ssin 3399 reldisj 3516 ssundifim 3548 ralm 3568 unissb 3886 repizf2lem 4213 elirr 4597 en2lp 4610 tfi 4638 ssrel 4771 ssrel2 4773 fncnv 5349 fun11 5350 axcaucvglemres 8032 axpre-suploc 8035 suprzclex 9491 raluz2 9720 supinfneg 9736 infsupneg 9737 infssuzex 10398 bezoutlemmain 12394 isprm2 12514 lmres 14795 ivthdich 15200 limcdifap 15209 |
| Copyright terms: Public domain | W3C validator |