| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.74i 180 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 693 sbcof2 1832 sblimv 1917 sbhb 1967 sblim 1984 2sb6 2011 sbcom2v 2012 2sb6rf 2017 eu1 2078 moabs 2102 mo3h 2106 moanim 2127 2moswapdc 2143 r2alf 2522 r19.21t 2580 rspc2gv 2888 reu2 2960 reu8 2968 2reuswapdc 2976 2rmorex 2978 dfdif3 3282 ssconb 3305 ssin 3394 reldisj 3511 ssundifim 3543 ralm 3563 unissb 3879 repizf2lem 4204 elirr 4587 en2lp 4600 tfi 4628 ssrel 4761 ssrel2 4763 fncnv 5334 fun11 5335 axcaucvglemres 7994 axpre-suploc 7997 suprzclex 9453 raluz2 9682 supinfneg 9698 infsupneg 9699 infssuzex 10357 bezoutlemmain 12238 isprm2 12358 lmres 14638 ivthdich 15043 limcdifap 15052 |
| Copyright terms: Public domain | W3C validator |