![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.74i 180 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 693 sbcof2 1821 sblimv 1906 sbhb 1956 sblim 1973 2sb6 2000 sbcom2v 2001 2sb6rf 2006 eu1 2067 moabs 2091 mo3h 2095 moanim 2116 2moswapdc 2132 r2alf 2511 r19.21t 2569 rspc2gv 2876 reu2 2948 reu8 2956 2reuswapdc 2964 2rmorex 2966 dfdif3 3269 ssconb 3292 ssin 3381 reldisj 3498 ssundifim 3530 ralm 3550 unissb 3865 repizf2lem 4190 elirr 4573 en2lp 4586 tfi 4614 ssrel 4747 ssrel2 4749 fncnv 5320 fun11 5321 axcaucvglemres 7959 axpre-suploc 7962 suprzclex 9415 raluz2 9644 supinfneg 9660 infsupneg 9661 infssuzex 12086 bezoutlemmain 12135 isprm2 12255 lmres 14416 ivthdich 14807 limcdifap 14816 |
Copyright terms: Public domain | W3C validator |