![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.74i 180 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 693 sbcof2 1821 sblimv 1906 sbhb 1956 sblim 1973 2sb6 2000 sbcom2v 2001 2sb6rf 2006 eu1 2067 moabs 2091 mo3h 2095 moanim 2116 2moswapdc 2132 r2alf 2511 r19.21t 2569 rspc2gv 2877 reu2 2949 reu8 2957 2reuswapdc 2965 2rmorex 2967 dfdif3 3270 ssconb 3293 ssin 3382 reldisj 3499 ssundifim 3531 ralm 3551 unissb 3866 repizf2lem 4191 elirr 4574 en2lp 4587 tfi 4615 ssrel 4748 ssrel2 4750 fncnv 5321 fun11 5322 axcaucvglemres 7961 axpre-suploc 7964 suprzclex 9418 raluz2 9647 supinfneg 9663 infsupneg 9664 infssuzex 12089 bezoutlemmain 12138 isprm2 12258 lmres 14427 ivthdich 14832 limcdifap 14841 |
Copyright terms: Public domain | W3C validator |