| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version | ||
| Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
| Ref | Expression |
|---|---|
| bi.a | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | pm5.74i 180 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imbi12i 239 anidmdbi 398 nan 693 sbcof2 1824 sblimv 1909 sbhb 1959 sblim 1976 2sb6 2003 sbcom2v 2004 2sb6rf 2009 eu1 2070 moabs 2094 mo3h 2098 moanim 2119 2moswapdc 2135 r2alf 2514 r19.21t 2572 rspc2gv 2880 reu2 2952 reu8 2960 2reuswapdc 2968 2rmorex 2970 dfdif3 3274 ssconb 3297 ssin 3386 reldisj 3503 ssundifim 3535 ralm 3555 unissb 3870 repizf2lem 4195 elirr 4578 en2lp 4591 tfi 4619 ssrel 4752 ssrel2 4754 fncnv 5325 fun11 5326 axcaucvglemres 7985 axpre-suploc 7988 suprzclex 9443 raluz2 9672 supinfneg 9688 infsupneg 9689 infssuzex 10342 bezoutlemmain 12192 isprm2 12312 lmres 14592 ivthdich 14997 limcdifap 15006 |
| Copyright terms: Public domain | W3C validator |