![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrdi | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbitrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imbitrdi.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbitrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imbitrdi.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 881 nfalt 1589 alexim 1656 19.36-1 1684 ax11ev 1839 equs5or 1841 necon2bd 2422 necon2d 2423 necon1bbiddc 2427 necon2abiddc 2430 necon2bbiddc 2431 necon4idc 2433 necon4ddc 2436 necon1bddc 2441 spc2gv 2851 spc3gv 2853 mo2icl 2939 reupick 3443 prneimg 3800 invdisj 4023 trin 4137 exmidsssnc 4232 ordsucss 4536 eqbrrdva 4832 elreldm 4888 elres 4978 xp11m 5104 ssrnres 5108 opelf 5425 dffo4 5706 dftpos3 6315 tfr1onlemaccex 6401 tfrcllemaccex 6414 nnaordex 6581 swoer 6615 map0g 6742 mapsn 6744 nneneq 6913 fnfi 6995 prarloclemlo 7554 genprndl 7581 genprndu 7582 cauappcvgprlemladdrl 7717 caucvgprlemladdrl 7738 caucvgsrlemoffres 7860 caucvgsr 7862 nntopi 7954 letr 8102 reapcotr 8617 apcotr 8626 mulext1 8631 lt2msq 8905 nneoor 9419 xrletr 9874 icoshft 10056 caucvgre 11125 absext 11207 rexico 11365 summodc 11526 gcdeq0 12114 intopsn 12950 znleval 14141 tgcn 14376 cnptoprest 14407 metequiv2 14664 bj-nnsn 15225 bj-inf2vnlem2 15463 |
Copyright terms: Public domain | W3C validator |