| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrdi | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbitrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imbitrdi.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbitrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imbitrdi.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) |
| 4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 881 nfalt 1592 alexim 1659 19.36-1 1687 ax11ev 1842 equs5or 1844 necon2bd 2425 necon2d 2426 necon1bbiddc 2430 necon2abiddc 2433 necon2bbiddc 2434 necon4idc 2436 necon4ddc 2439 necon1bddc 2444 spc2gv 2855 spc3gv 2857 mo2icl 2943 reupick 3448 prneimg 3805 invdisj 4028 trin 4142 exmidsssnc 4237 ordsucss 4541 eqbrrdva 4837 elreldm 4893 elres 4983 xp11m 5109 ssrnres 5113 opelf 5432 dffo4 5713 dftpos3 6329 tfr1onlemaccex 6415 tfrcllemaccex 6428 nnaordex 6595 swoer 6629 map0g 6756 mapsn 6758 nneneq 6927 fnfi 7011 prarloclemlo 7580 genprndl 7607 genprndu 7608 cauappcvgprlemladdrl 7743 caucvgprlemladdrl 7764 caucvgsrlemoffres 7886 caucvgsr 7888 nntopi 7980 letr 8128 reapcotr 8644 apcotr 8653 mulext1 8658 lt2msq 8932 nneoor 9447 xrletr 9902 icoshft 10084 caucvgre 11165 absext 11247 rexico 11405 summodc 11567 gcdeq0 12171 intopsn 13071 znleval 14287 tgcn 14552 cnptoprest 14583 metequiv2 14840 bj-nnsn 15487 bj-inf2vnlem2 15725 |
| Copyright terms: Public domain | W3C validator |