![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrdi | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbitrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imbitrdi.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbitrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imbitrdi.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 881 nfalt 1589 alexim 1656 19.36-1 1684 ax11ev 1839 equs5or 1841 necon2bd 2422 necon2d 2423 necon1bbiddc 2427 necon2abiddc 2430 necon2bbiddc 2431 necon4idc 2433 necon4ddc 2436 necon1bddc 2441 spc2gv 2852 spc3gv 2854 mo2icl 2940 reupick 3444 prneimg 3801 invdisj 4024 trin 4138 exmidsssnc 4233 ordsucss 4537 eqbrrdva 4833 elreldm 4889 elres 4979 xp11m 5105 ssrnres 5109 opelf 5426 dffo4 5707 dftpos3 6317 tfr1onlemaccex 6403 tfrcllemaccex 6416 nnaordex 6583 swoer 6617 map0g 6744 mapsn 6746 nneneq 6915 fnfi 6997 prarloclemlo 7556 genprndl 7583 genprndu 7584 cauappcvgprlemladdrl 7719 caucvgprlemladdrl 7740 caucvgsrlemoffres 7862 caucvgsr 7864 nntopi 7956 letr 8104 reapcotr 8619 apcotr 8628 mulext1 8633 lt2msq 8907 nneoor 9422 xrletr 9877 icoshft 10059 caucvgre 11128 absext 11210 rexico 11368 summodc 11529 gcdeq0 12117 intopsn 12953 znleval 14152 tgcn 14387 cnptoprest 14418 metequiv2 14675 bj-nnsn 15295 bj-inf2vnlem2 15533 |
Copyright terms: Public domain | W3C validator |