![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrdi | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbitrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
imbitrdi.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbitrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | imbitrdi.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) |
4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 880 nfalt 1578 alexim 1645 19.36-1 1673 ax11ev 1828 equs5or 1830 necon2bd 2405 necon2d 2406 necon1bbiddc 2410 necon2abiddc 2413 necon2bbiddc 2414 necon4idc 2416 necon4ddc 2419 necon1bddc 2424 spc2gv 2829 spc3gv 2831 mo2icl 2917 reupick 3420 prneimg 3775 invdisj 3998 trin 4112 exmidsssnc 4204 ordsucss 4504 eqbrrdva 4798 elreldm 4854 elres 4944 xp11m 5068 ssrnres 5072 opelf 5388 dffo4 5665 dftpos3 6263 tfr1onlemaccex 6349 tfrcllemaccex 6362 nnaordex 6529 swoer 6563 map0g 6688 mapsn 6690 nneneq 6857 fnfi 6936 prarloclemlo 7493 genprndl 7520 genprndu 7521 cauappcvgprlemladdrl 7656 caucvgprlemladdrl 7677 caucvgsrlemoffres 7799 caucvgsr 7801 nntopi 7893 letr 8040 reapcotr 8555 apcotr 8564 mulext1 8569 lt2msq 8843 nneoor 9355 xrletr 9808 icoshft 9990 caucvgre 10990 absext 11072 rexico 11230 summodc 11391 gcdeq0 11978 intopsn 12786 tgcn 13711 cnptoprest 13742 metequiv2 13999 bj-nnsn 14488 bj-inf2vnlem2 14726 |
Copyright terms: Public domain | W3C validator |