| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrdi | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbitrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imbitrdi.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbitrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imbitrdi.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) |
| 4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 884 nfalt 1604 alexim 1671 19.36-1 1699 ax11ev 1854 equs5or 1856 necon2bd 2438 necon2d 2439 necon1bbiddc 2443 necon2abiddc 2446 necon2bbiddc 2447 necon4idc 2449 necon4ddc 2452 necon1bddc 2457 spc2gv 2874 spc3gv 2876 mo2icl 2962 reupick 3468 prneimg 3831 invdisj 4055 trin 4171 exmidsssnc 4266 ordsucss 4573 eqbrrdva 4869 elreldm 4926 elres 5017 xp11m 5143 ssrnres 5147 opelf 5472 dffo4 5756 dftpos3 6378 tfr1onlemaccex 6464 tfrcllemaccex 6477 nnaordex 6644 swoer 6678 map0g 6805 mapsn 6807 nneneq 6986 fnfi 7071 prarloclemlo 7649 genprndl 7676 genprndu 7677 cauappcvgprlemladdrl 7812 caucvgprlemladdrl 7833 caucvgsrlemoffres 7955 caucvgsr 7957 nntopi 8049 letr 8197 reapcotr 8713 apcotr 8722 mulext1 8727 lt2msq 9001 nneoor 9517 xrletr 9972 icoshft 10154 swrdccatin2 11227 caucvgre 11458 absext 11540 rexico 11698 summodc 11860 gcdeq0 12464 intopsn 13366 znleval 14582 tgcn 14847 cnptoprest 14878 metequiv2 15135 bj-nnsn 16007 bj-inf2vnlem2 16244 |
| Copyright terms: Public domain | W3C validator |