| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrdi | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbitrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| imbitrdi.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbitrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imbitrdi.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) |
| 4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 885 nfalt 1624 alexim 1691 19.36-1 1719 ax11ev 1874 equs5or 1876 necon2bd 2458 necon2d 2459 necon1bbiddc 2463 necon2abiddc 2466 necon2bbiddc 2467 necon4idc 2469 necon4ddc 2472 necon1bddc 2477 spc2gv 2894 spc3gv 2896 mo2icl 2982 reupick 3488 prneimg 3852 invdisj 4076 trin 4192 exmidsssnc 4287 ordsucss 4596 eqbrrdva 4892 elreldm 4950 elres 5041 xp11m 5167 ssrnres 5171 opelf 5498 dffo4 5785 dftpos3 6414 tfr1onlemaccex 6500 tfrcllemaccex 6513 nnaordex 6682 swoer 6716 map0g 6843 mapsn 6845 nneneq 7026 fnfi 7111 prarloclemlo 7689 genprndl 7716 genprndu 7717 cauappcvgprlemladdrl 7852 caucvgprlemladdrl 7873 caucvgsrlemoffres 7995 caucvgsr 7997 nntopi 8089 letr 8237 reapcotr 8753 apcotr 8762 mulext1 8767 lt2msq 9041 nneoor 9557 xrletr 10012 icoshft 10194 swrdccatin2 11269 caucvgre 11500 absext 11582 rexico 11740 summodc 11902 gcdeq0 12506 intopsn 13408 znleval 14625 tgcn 14890 cnptoprest 14921 metequiv2 15178 bj-nnsn 16121 bj-inf2vnlem2 16358 |
| Copyright terms: Public domain | W3C validator |