| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imbitrdi | GIF version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| imbitrdi.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| imbitrdi.2 | ⊢ (𝜒 ↔ 𝜃) | 
| Ref | Expression | 
|---|---|
| imbitrdi | ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imbitrdi.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imbitrdi.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 2 | biimpi 120 | . 2 ⊢ (𝜒 → 𝜃) | 
| 4 | 1, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 881 nfalt 1592 alexim 1659 19.36-1 1687 ax11ev 1842 equs5or 1844 necon2bd 2425 necon2d 2426 necon1bbiddc 2430 necon2abiddc 2433 necon2bbiddc 2434 necon4idc 2436 necon4ddc 2439 necon1bddc 2444 spc2gv 2855 spc3gv 2857 mo2icl 2943 reupick 3447 prneimg 3804 invdisj 4027 trin 4141 exmidsssnc 4236 ordsucss 4540 eqbrrdva 4836 elreldm 4892 elres 4982 xp11m 5108 ssrnres 5112 opelf 5429 dffo4 5710 dftpos3 6320 tfr1onlemaccex 6406 tfrcllemaccex 6419 nnaordex 6586 swoer 6620 map0g 6747 mapsn 6749 nneneq 6918 fnfi 7002 prarloclemlo 7561 genprndl 7588 genprndu 7589 cauappcvgprlemladdrl 7724 caucvgprlemladdrl 7745 caucvgsrlemoffres 7867 caucvgsr 7869 nntopi 7961 letr 8109 reapcotr 8625 apcotr 8634 mulext1 8639 lt2msq 8913 nneoor 9428 xrletr 9883 icoshft 10065 caucvgre 11146 absext 11228 rexico 11386 summodc 11548 gcdeq0 12144 intopsn 13010 znleval 14209 tgcn 14444 cnptoprest 14475 metequiv2 14732 bj-nnsn 15379 bj-inf2vnlem2 15617 | 
| Copyright terms: Public domain | W3C validator |