ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2i GIF version

Theorem necon2i 2401
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
Hypothesis
Ref Expression
necon2i.1 (𝐴 = 𝐵𝐶𝐷)
Assertion
Ref Expression
necon2i (𝐶 = 𝐷𝐴𝐵)

Proof of Theorem necon2i
StepHypRef Expression
1 necon2i.1 . . 3 (𝐴 = 𝐵𝐶𝐷)
21neneqd 2366 . 2 (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷)
32necon2ai 2399 1 (𝐶 = 𝐷𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wne 2345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2346
This theorem is referenced by:  xleaddadd  9858
  Copyright terms: Public domain W3C validator