| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2bi | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
| Ref | Expression |
|---|---|
| necon2bi.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| necon2bi | ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2bi.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 2 | 1 | neneqd 2388 | . 2 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| 3 | 2 | con2i 628 | 1 ⊢ (𝐴 = 𝐵 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: minel 3513 rzal 3549 difsnb 3766 fin0 6955 0npi 7397 0nsr 7833 renfdisj 8103 nltpnft 9906 ngtmnft 9909 xrrebnd 9911 hashnncl 10904 rennim 11184 pceq0 12516 |
| Copyright terms: Public domain | W3C validator |