ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2bi GIF version

Theorem necon2bi 2402
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.)
Hypothesis
Ref Expression
necon2bi.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
necon2bi (𝐴 = 𝐵 → ¬ 𝜑)

Proof of Theorem necon2bi
StepHypRef Expression
1 necon2bi.1 . . 3 (𝜑𝐴𝐵)
21neneqd 2368 . 2 (𝜑 → ¬ 𝐴 = 𝐵)
32con2i 627 1 (𝐴 = 𝐵 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1353  wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2348
This theorem is referenced by:  minel  3486  rzal  3522  difsnb  3737  fin0  6887  0npi  7314  0nsr  7750  renfdisj  8019  nltpnft  9816  ngtmnft  9819  xrrebnd  9821  hashnncl  10777  rennim  11013  pceq0  12323
  Copyright terms: Public domain W3C validator