ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2ad GIF version

Theorem necon2ad 2421
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon2ad.1 (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))
Assertion
Ref Expression
necon2ad (𝜑 → (𝜓𝐴𝐵))

Proof of Theorem necon2ad
StepHypRef Expression
1 necon2ad.1 . . 3 (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓))
21con2d 625 . 2 (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵))
3 df-ne 2365 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
42, 3imbitrrdi 162 1 (𝜑 → (𝜓𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117  df-ne 2365
This theorem is referenced by:  necon2d  2423  prneimg  3800  tz7.2  4385  nordeq  4576  pr2ne  7252  ltne  8104  apne  8642  xrltne  9879  npnflt  9881  nmnfgt  9884  ge0nemnf  9890  rpexp  12291  sqrt2irr  12300  pcgcd1  12466  nzrunit  13684  lgsmod  15142
  Copyright terms: Public domain W3C validator