![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon2ad | GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
2 | 1 | con2d 625 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: necon2d 2423 prneimg 3800 tz7.2 4385 nordeq 4576 pr2ne 7252 ltne 8104 apne 8642 xrltne 9879 npnflt 9881 nmnfgt 9884 ge0nemnf 9890 rpexp 12291 sqrt2irr 12300 pcgcd1 12466 nzrunit 13684 lgsmod 15142 |
Copyright terms: Public domain | W3C validator |