![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necon2ad | GIF version |
Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
Ref | Expression |
---|---|
necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
2 | 1 | con2d 625 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
3 | df-ne 2365 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ≠ wne 2364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: necon2d 2423 prneimg 3801 tz7.2 4386 nordeq 4577 pr2ne 7254 ltne 8106 apne 8644 xrltne 9882 npnflt 9884 nmnfgt 9887 ge0nemnf 9893 rpexp 12294 sqrt2irr 12303 pcgcd1 12469 nzrunit 13687 lgsmod 15183 |
Copyright terms: Public domain | W3C validator |