| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necon2ad | GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 19-Apr-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
| Ref | Expression |
|---|---|
| necon2ad.1 | ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| necon2ad | ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2ad.1 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 → ¬ 𝜓)) | |
| 2 | 1 | con2d 625 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝐴 = 𝐵)) |
| 3 | df-ne 2378 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 4 | 2, 3 | imbitrrdi 162 | 1 ⊢ (𝜑 → (𝜓 → 𝐴 ≠ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-ne 2378 |
| This theorem is referenced by: necon2d 2436 prneimg 3817 tz7.2 4405 nordeq 4596 pr2ne 7307 ltne 8164 apne 8703 xrltne 9942 npnflt 9944 nmnfgt 9947 ge0nemnf 9953 rpexp 12519 sqrt2irr 12528 pcgcd1 12695 nzrunit 13994 lgsmod 15547 |
| Copyright terms: Public domain | W3C validator |