Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neneqd | GIF version |
Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
neneqd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
neneqd | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneqd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | df-ne 2328 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1335 ≠ wne 2327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-ne 2328 |
This theorem is referenced by: neneq 2349 necon2bi 2382 necon2i 2383 pm2.21ddne 2410 nelrdva 2919 neq0r 3408 0inp0 4126 pwntru 4159 nndceq0 4575 frecabcl 6340 frecsuclem 6347 nnsucsssuc 6432 phpm 6803 diffisn 6831 en2eqpr 6845 fival 6907 omp1eomlem 7028 difinfsnlem 7033 difinfsn 7034 ctmlemr 7042 fodjuomnilemdc 7070 indpi 7245 nqnq0pi 7341 ltxrlt 7926 sup3exmid 8811 elnnz 9160 xrnemnf 9666 xrnepnf 9667 xrlttri3 9686 nltpnft 9700 ngtmnft 9703 xrpnfdc 9728 xrmnfdc 9729 xleaddadd 9773 fzprval 9966 fxnn0nninf 10319 iseqf1olemklt 10366 seq3f1olemqsumkj 10379 expnnval 10404 xrmaxrecl 11134 fsumcl2lem 11277 fprodcl2lem 11484 dvdsle 11717 mod2eq1n2dvds 11751 nndvdslegcd 11829 gcdnncl 11831 divgcdnn 11839 sqgcd 11893 eucalgf 11912 eucalginv 11913 lcmeq0 11928 lcmgcdlem 11934 qredeu 11954 rpdvds 11956 cncongr2 11961 divnumden 12050 divdenle 12051 phibndlem 12068 phisum 12092 ennnfonelemk 12101 ennnfonelemjn 12103 ennnfonelemp1 12107 ennnfonelemim 12125 isxmet2d 12708 dvexp2 13036 logbgcd1irraplemexp 13245 nnsf 13538 peano4nninf 13539 exmidsbthrlem 13555 refeq 13561 trilpolemeq1 13573 dceqnconst 13592 |
Copyright terms: Public domain | W3C validator |