ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleaddadd GIF version

Theorem xleaddadd 9991
Description: Cancelling a factor of two in (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
Assertion
Ref Expression
xleaddadd ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))

Proof of Theorem xleaddadd
StepHypRef Expression
1 recn 8040 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
21adantl 277 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
322timesd 9262 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) = (𝐴 + 𝐴))
4 recn 8040 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
54ad2antlr 489 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
652timesd 9262 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (2 · 𝐵) = (𝐵 + 𝐵))
73, 6breq12d 4056 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((2 · 𝐴) ≤ (2 · 𝐵) ↔ (𝐴 + 𝐴) ≤ (𝐵 + 𝐵)))
8 simpr 110 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
9 simplr 528 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
10 2re 9088 . . . . . 6 2 ∈ ℝ
1110a1i 9 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 2 ∈ ℝ)
12 2pos 9109 . . . . . 6 0 < 2
1312a1i 9 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 0 < 2)
14 lemul2 8912 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴𝐵 ↔ (2 · 𝐴) ≤ (2 · 𝐵)))
158, 9, 11, 13, 14syl112anc 1253 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴𝐵 ↔ (2 · 𝐴) ≤ (2 · 𝐵)))
168, 8rexaddd 9958 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐴) = (𝐴 + 𝐴))
179, 9rexaddd 9958 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 𝐵) = (𝐵 + 𝐵))
1816, 17breq12d 4056 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → ((𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵) ↔ (𝐴 + 𝐴) ≤ (𝐵 + 𝐵)))
197, 15, 183bitr4d 220 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
20 renepnf 8102 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
2120neneqd 2396 . . . . . . 7 (𝐵 ∈ ℝ → ¬ 𝐵 = +∞)
2221ad2antlr 489 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐵 = +∞)
23 xgepnf 9920 . . . . . . 7 (𝐵 ∈ ℝ* → (+∞ ≤ 𝐵𝐵 = +∞))
2423ad3antlr 493 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (+∞ ≤ 𝐵𝐵 = +∞))
2522, 24mtbird 674 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ ≤ 𝐵)
26 breq1 4046 . . . . . 6 (𝐴 = +∞ → (𝐴𝐵 ↔ +∞ ≤ 𝐵))
2726adantl 277 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴𝐵 ↔ +∞ ≤ 𝐵))
2825, 27mtbird 674 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴𝐵)
29 simplr 528 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ)
3029, 29rexaddd 9958 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐵) = (𝐵 + 𝐵))
3129, 29readdcld 8084 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 + 𝐵) ∈ ℝ)
3230, 31eqeltrd 2281 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐵) ∈ ℝ)
33 renepnf 8102 . . . . . . . 8 ((𝐵 +𝑒 𝐵) ∈ ℝ → (𝐵 +𝑒 𝐵) ≠ +∞)
3433neneqd 2396 . . . . . . 7 ((𝐵 +𝑒 𝐵) ∈ ℝ → ¬ (𝐵 +𝑒 𝐵) = +∞)
3532, 34syl 14 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ (𝐵 +𝑒 𝐵) = +∞)
36 simpllr 534 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
3736, 36xaddcld 9988 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐵) ∈ ℝ*)
38 xgepnf 9920 . . . . . . 7 ((𝐵 +𝑒 𝐵) ∈ ℝ* → (+∞ ≤ (𝐵 +𝑒 𝐵) ↔ (𝐵 +𝑒 𝐵) = +∞))
3937, 38syl 14 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (+∞ ≤ (𝐵 +𝑒 𝐵) ↔ (𝐵 +𝑒 𝐵) = +∞))
4035, 39mtbird 674 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ ≤ (𝐵 +𝑒 𝐵))
41 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
4241, 41oveq12d 5952 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐴) = (+∞ +𝑒 +∞))
43 pnfxr 8107 . . . . . . . 8 +∞ ∈ ℝ*
44 pnfnemnf 8109 . . . . . . . 8 +∞ ≠ -∞
45 xaddpnf2 9951 . . . . . . . 8 ((+∞ ∈ ℝ* ∧ +∞ ≠ -∞) → (+∞ +𝑒 +∞) = +∞)
4643, 44, 45mp2an 426 . . . . . . 7 (+∞ +𝑒 +∞) = +∞
4742, 46eqtrdi 2253 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐴) = +∞)
4847breq1d 4053 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵) ↔ +∞ ≤ (𝐵 +𝑒 𝐵)))
4940, 48mtbird 674 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))
5028, 492falsed 703 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
51 mnfle 9896 . . . . . 6 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
5251ad3antlr 493 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ 𝐵)
53 breq1 4046 . . . . . 6 (𝐴 = -∞ → (𝐴𝐵 ↔ -∞ ≤ 𝐵))
5453adantl 277 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴𝐵 ↔ -∞ ≤ 𝐵))
5552, 54mpbird 167 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴𝐵)
56 oveq1 5941 . . . . . . 7 (𝐴 = -∞ → (𝐴 +𝑒 𝐴) = (-∞ +𝑒 𝐴))
5756adantl 277 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐴) = (-∞ +𝑒 𝐴))
58 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
59 mnfnepnf 8110 . . . . . . . . 9 -∞ ≠ +∞
60 neeq1 2388 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞))
6159, 60mpbiri 168 . . . . . . . 8 (𝐴 = -∞ → 𝐴 ≠ +∞)
6261adantl 277 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ≠ +∞)
63 xaddmnf2 9953 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (-∞ +𝑒 𝐴) = -∞)
6458, 62, 63syl2anc 411 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (-∞ +𝑒 𝐴) = -∞)
6557, 64eqtrd 2237 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐴) = -∞)
66 simpr 110 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
6766, 66xaddcld 9988 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 +𝑒 𝐵) ∈ ℝ*)
6867ad2antrr 488 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐵 +𝑒 𝐵) ∈ ℝ*)
69 mnfle 9896 . . . . . 6 ((𝐵 +𝑒 𝐵) ∈ ℝ* → -∞ ≤ (𝐵 +𝑒 𝐵))
7068, 69syl 14 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -∞ ≤ (𝐵 +𝑒 𝐵))
7165, 70eqbrtrd 4065 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))
7255, 712thd 175 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
73 elxr 9880 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7473biimpi 120 . . . 4 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7574ad2antrr 488 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7619, 50, 72, 75mpjao3dan 1319 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
77 pnfge 9893 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
7877ad2antrr 488 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐴 ≤ +∞)
79 breq2 4047 . . . . 5 (𝐵 = +∞ → (𝐴𝐵𝐴 ≤ +∞))
8079adantl 277 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → (𝐴𝐵𝐴 ≤ +∞))
8178, 80mpbird 167 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐴𝐵)
82 simpll 527 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
8382, 82xaddcld 9988 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐴) ∈ ℝ*)
84 pnfge 9893 . . . . 5 ((𝐴 +𝑒 𝐴) ∈ ℝ* → (𝐴 +𝑒 𝐴) ≤ +∞)
8583, 84syl 14 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐴) ≤ +∞)
86 oveq1 5941 . . . . . 6 (𝐵 = +∞ → (𝐵 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
87 eleq1 2267 . . . . . . . 8 (𝐵 = +∞ → (𝐵 ∈ ℝ* ↔ +∞ ∈ ℝ*))
8843, 87mpbiri 168 . . . . . . 7 (𝐵 = +∞ → 𝐵 ∈ ℝ*)
89 neeq1 2388 . . . . . . . 8 (𝐵 = +∞ → (𝐵 ≠ -∞ ↔ +∞ ≠ -∞))
9044, 89mpbiri 168 . . . . . . 7 (𝐵 = +∞ → 𝐵 ≠ -∞)
91 xaddpnf2 9951 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
9288, 90, 91syl2anc 411 . . . . . 6 (𝐵 = +∞ → (+∞ +𝑒 𝐵) = +∞)
9386, 92eqtrd 2237 . . . . 5 (𝐵 = +∞ → (𝐵 +𝑒 𝐵) = +∞)
9493adantl 277 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐵) = +∞)
9585, 94breqtrrd 4071 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))
9681, 952thd 175 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = +∞) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
97 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
9897renemnfd 8106 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → 𝐴 ≠ -∞)
9998neneqd 2396 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → ¬ 𝐴 = -∞)
100 ngtmnft 9921 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
101 mnfxr 8111 . . . . . . . . . 10 -∞ ∈ ℝ*
102 xrlenlt 8119 . . . . . . . . . 10 ((𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴))
103101, 102mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴))
104100, 103bitr4d 191 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ 𝐴 ≤ -∞))
105104ad2antrr 488 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → (𝐴 = -∞ ↔ 𝐴 ≤ -∞))
106 breq2 4047 . . . . . . . 8 (𝐵 = -∞ → (𝐴𝐵𝐴 ≤ -∞))
107106adantl 277 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → (𝐴𝐵𝐴 ≤ -∞))
108105, 107bitr4d 191 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → (𝐴 = -∞ ↔ 𝐴𝐵))
109108adantr 276 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → (𝐴 = -∞ ↔ 𝐴𝐵))
11099, 109mtbid 673 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → ¬ 𝐴𝐵)
11197, 97rexaddd 9958 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐴) = (𝐴 + 𝐴))
11297, 97readdcld 8084 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → (𝐴 + 𝐴) ∈ ℝ)
113111, 112eqeltrd 2281 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐴) ∈ ℝ)
114113renemnfd 8106 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐴) ≠ -∞)
115114neneqd 2396 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → ¬ (𝐴 +𝑒 𝐴) = -∞)
116 simpll 527 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
117116, 116xaddcld 9988 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐴) ∈ ℝ*)
118 xrlenlt 8119 . . . . . . . . 9 (((𝐴 +𝑒 𝐴) ∈ ℝ* ∧ -∞ ∈ ℝ*) → ((𝐴 +𝑒 𝐴) ≤ -∞ ↔ ¬ -∞ < (𝐴 +𝑒 𝐴)))
119101, 118mpan2 425 . . . . . . . 8 ((𝐴 +𝑒 𝐴) ∈ ℝ* → ((𝐴 +𝑒 𝐴) ≤ -∞ ↔ ¬ -∞ < (𝐴 +𝑒 𝐴)))
120117, 119syl 14 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐴) ≤ -∞ ↔ ¬ -∞ < (𝐴 +𝑒 𝐴)))
121 oveq2 5942 . . . . . . . . . 10 (𝐵 = -∞ → (𝐵 +𝑒 𝐵) = (𝐵 +𝑒 -∞))
122 eleq1 2267 . . . . . . . . . . . 12 (𝐵 = -∞ → (𝐵 ∈ ℝ* ↔ -∞ ∈ ℝ*))
123101, 122mpbiri 168 . . . . . . . . . . 11 (𝐵 = -∞ → 𝐵 ∈ ℝ*)
12490necon2i 2431 . . . . . . . . . . 11 (𝐵 = -∞ → 𝐵 ≠ +∞)
125 xaddmnf1 9952 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
126123, 124, 125syl2anc 411 . . . . . . . . . 10 (𝐵 = -∞ → (𝐵 +𝑒 -∞) = -∞)
127121, 126eqtrd 2237 . . . . . . . . 9 (𝐵 = -∞ → (𝐵 +𝑒 𝐵) = -∞)
128127adantl 277 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐵) = -∞)
129128breq2d 4055 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵) ↔ (𝐴 +𝑒 𝐴) ≤ -∞))
130 ngtmnft 9921 . . . . . . . 8 ((𝐴 +𝑒 𝐴) ∈ ℝ* → ((𝐴 +𝑒 𝐴) = -∞ ↔ ¬ -∞ < (𝐴 +𝑒 𝐴)))
131117, 130syl 14 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐴) = -∞ ↔ ¬ -∞ < (𝐴 +𝑒 𝐴)))
132120, 129, 1313bitr4rd 221 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐴) = -∞ ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
133132adantr 276 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → ((𝐴 +𝑒 𝐴) = -∞ ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
134115, 133mtbid 673 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → ¬ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))
135110, 1342falsed 703 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 ∈ ℝ) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
13644neii 2377 . . . . . 6 ¬ +∞ = -∞
137 eqeq1 2211 . . . . . . 7 (𝐴 = +∞ → (𝐴 = -∞ ↔ +∞ = -∞))
138137adantl 277 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → (𝐴 = -∞ ↔ +∞ = -∞))
139136, 138mtbiri 676 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → ¬ 𝐴 = -∞)
140108adantr 276 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → (𝐴 = -∞ ↔ 𝐴𝐵))
141139, 140mtbid 673 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → ¬ 𝐴𝐵)
142 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 ∈ ℝ*)
143139neqned 2382 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → 𝐴 ≠ -∞)
144 xaddnemnf 9961 . . . . . . 7 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐴 ∈ ℝ*𝐴 ≠ -∞)) → (𝐴 +𝑒 𝐴) ≠ -∞)
145142, 143, 142, 143, 144syl22anc 1250 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐴) ≠ -∞)
146145neneqd 2396 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → ¬ (𝐴 +𝑒 𝐴) = -∞)
147132adantr 276 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐴) = -∞ ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
148146, 147mtbid 673 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → ¬ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))
149141, 1482falsed 703 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = +∞) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
150108biimpa 296 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → 𝐴𝐵)
151 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
152151, 151xaddcld 9988 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐴) ∈ ℝ*)
153152xrleidd 9905 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐴) ≤ (𝐴 +𝑒 𝐴))
154 simpr 110 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → 𝐴 = -∞)
155 simplr 528 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → 𝐵 = -∞)
156154, 155eqtr4d 2240 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → 𝐴 = 𝐵)
157156, 156oveq12d 5952 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐴) = (𝐵 +𝑒 𝐵))
158153, 157breqtrd 4069 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵))
159150, 1582thd 175 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) ∧ 𝐴 = -∞) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
16074ad2antrr 488 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
161135, 149, 159, 160mpjao3dan 1319 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐵 = -∞) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
162 elxr 9880 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
163162biimpi 120 . . 3 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
164163adantl 277 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
16576, 96, 161, 164mpjao3dan 1319 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 +𝑒 𝐴) ≤ (𝐵 +𝑒 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 979   = wceq 1372  wcel 2175  wne 2375   class class class wbr 4043  (class class class)co 5934  cc 7905  cr 7906  0cc0 7907   + caddc 7910   · cmul 7912  +∞cpnf 8086  -∞cmnf 8087  *cxr 8088   < clt 8089  cle 8090  2c2 9069   +𝑒 cxad 9874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023  ax-pre-mulgt0 8024
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-2 9077  df-xadd 9877
This theorem is referenced by:  psmetge0  14721  xmetge0  14755
  Copyright terms: Public domain W3C validator