Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon4bbiddc | GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.) |
Ref | Expression |
---|---|
necon4bbiddc.1 | ⊢ (𝜑 → (DECID 𝜓 → (DECID 𝐴 = 𝐵 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)))) |
Ref | Expression |
---|---|
necon4bbiddc | ⊢ (𝜑 → (DECID 𝜓 → (DECID 𝐴 = 𝐵 → (𝜓 ↔ 𝐴 = 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4bbiddc.1 | . . . . . 6 ⊢ (𝜑 → (DECID 𝜓 → (DECID 𝐴 = 𝐵 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)))) | |
2 | bicom 139 | . . . . . 6 ⊢ ((¬ 𝜓 ↔ 𝐴 ≠ 𝐵) ↔ (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) | |
3 | 1, 2 | syl8ib 165 | . . . . 5 ⊢ (𝜑 → (DECID 𝜓 → (DECID 𝐴 = 𝐵 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)))) |
4 | 3 | com23 78 | . . . 4 ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)))) |
5 | 4 | necon4abiddc 2413 | . . 3 ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 = 𝐵 ↔ 𝜓)))) |
6 | 5 | com23 78 | . 2 ⊢ (𝜑 → (DECID 𝜓 → (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ↔ 𝜓)))) |
7 | bicom 139 | . 2 ⊢ ((𝐴 = 𝐵 ↔ 𝜓) ↔ (𝜓 ↔ 𝐴 = 𝐵)) | |
8 | 6, 7 | syl8ib 165 | 1 ⊢ (𝜑 → (DECID 𝜓 → (DECID 𝐴 = 𝐵 → (𝜓 ↔ 𝐴 = 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 DECID wdc 829 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-ne 2341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |