ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4biddc GIF version

Theorem necon4biddc 2402
Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
Hypothesis
Ref Expression
necon4biddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴𝐵𝐶𝐷))))
Assertion
Ref Expression
necon4biddc (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴 = 𝐵𝐶 = 𝐷))))

Proof of Theorem necon4biddc
StepHypRef Expression
1 necon4biddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴𝐵𝐶𝐷))))
2 df-ne 2328 . . . 4 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
32bibi2i 226 . . 3 ((𝐴𝐵𝐶𝐷) ↔ (𝐴𝐵 ↔ ¬ 𝐶 = 𝐷))
41, 3syl8ib 165 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴𝐵 ↔ ¬ 𝐶 = 𝐷))))
54necon4abiddc 2400 1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝐶 = 𝐷 → (𝐴 = 𝐵𝐶 = 𝐷))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  DECID wdc 820   = wceq 1335  wne 2327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-ne 2328
This theorem is referenced by:  nebidc  2407
  Copyright terms: Public domain W3C validator