| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymir | GIF version | ||
| Description: Inference associated with nesym 2412. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymir.1 | ⊢ ¬ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| nesymir | ⊢ 𝐵 ≠ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymir.1 | . 2 ⊢ ¬ 𝐴 = 𝐵 | |
| 2 | nesym 2412 | . 2 ⊢ (𝐵 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ 𝐵 ≠ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |