ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesymir GIF version

Theorem nesymir 2387
Description: Inference associated with nesym 2385. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
nesymir.1 ¬ 𝐴 = 𝐵
Assertion
Ref Expression
nesymir 𝐵𝐴

Proof of Theorem nesymir
StepHypRef Expression
1 nesymir.1 . 2 ¬ 𝐴 = 𝐵
2 nesym 2385 . 2 (𝐵𝐴 ↔ ¬ 𝐴 = 𝐵)
31, 2mpbir 145 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1348  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-ne 2341
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator