ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesymi GIF version

Theorem nesymi 2302
Description: Inference associated with nesym 2301. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
nesymi.1 𝐴𝐵
Assertion
Ref Expression
nesymi ¬ 𝐵 = 𝐴

Proof of Theorem nesymi
StepHypRef Expression
1 nesymi.1 . 2 𝐴𝐵
2 nesym 2301 . 2 (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)
31, 2mpbi 144 1 ¬ 𝐵 = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1290  wne 2256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-5 1382  ax-gen 1384  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-cleq 2082  df-ne 2257
This theorem is referenced by:  frec0g  6176  djune  6823  fodjuomnilemm  6862  fodjuomnilem0  6863  xrltnr  9311  nltmnf  9319  nninfalllem1  12171  nninfall  12172  nninfsellemeq  12178
  Copyright terms: Public domain W3C validator