| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymi | GIF version | ||
| Description: Inference associated with nesym 2425. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nesym 2425 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1375 ≠ wne 2380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-gen 1475 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-ne 2381 |
| This theorem is referenced by: frec0g 6513 djune 7213 omp1eomlem 7229 fodjum 7281 fodju0 7282 ismkvnex 7290 mkvprop 7293 omniwomnimkv 7302 pr2cv1 7336 3nelsucpw1 7387 xrltnr 9943 nltmnf 9952 xnn0xadd0 10031 fnpr2ob 13339 2lgslem3 15745 2lgslem4 15747 structiedg0val 15806 2omap 16270 pwle2 16275 nninfalllem1 16285 nninfall 16286 nninfsellemeq 16291 trirec0xor 16324 |
| Copyright terms: Public domain | W3C validator |