ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesymi GIF version

Theorem nesymi 2410
Description: Inference associated with nesym 2409. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
nesymi.1 𝐴𝐵
Assertion
Ref Expression
nesymi ¬ 𝐵 = 𝐴

Proof of Theorem nesymi
StepHypRef Expression
1 nesymi.1 . 2 𝐴𝐵
2 nesym 2409 . 2 (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)
31, 2mpbi 145 1 ¬ 𝐵 = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1364  wne 2364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-ne 2365
This theorem is referenced by:  frec0g  6452  djune  7139  omp1eomlem  7155  fodjum  7207  fodju0  7208  ismkvnex  7216  mkvprop  7219  omniwomnimkv  7228  3nelsucpw1  7296  xrltnr  9848  nltmnf  9857  xnn0xadd0  9936  fnpr2ob  12926  2lgslem3  15258  2lgslem4  15260  pwle2  15559  nninfalllem1  15568  nninfall  15569  nninfsellemeq  15574  trirec0xor  15605
  Copyright terms: Public domain W3C validator