| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nesymi | GIF version | ||
| Description: Inference associated with nesym 2412. (Contributed by BJ, 7-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 | 
| Ref | Expression | 
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nesymi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nesym 2412 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐵 = 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: frec0g 6455 djune 7144 omp1eomlem 7160 fodjum 7212 fodju0 7213 ismkvnex 7221 mkvprop 7224 omniwomnimkv 7233 3nelsucpw1 7301 xrltnr 9854 nltmnf 9863 xnn0xadd0 9942 fnpr2ob 12983 2lgslem3 15342 2lgslem4 15344 pwle2 15643 nninfalllem1 15652 nninfall 15653 nninfsellemeq 15658 trirec0xor 15689 | 
| Copyright terms: Public domain | W3C validator |