![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nesymi | GIF version |
Description: Inference associated with nesym 2301. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | nesym 2301 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1290 ≠ wne 2256 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-5 1382 ax-gen 1384 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 df-ne 2257 |
This theorem is referenced by: frec0g 6176 djune 6823 fodjuomnilemm 6862 fodjuomnilem0 6863 xrltnr 9311 nltmnf 9319 nninfalllem1 12171 nninfall 12172 nninfsellemeq 12178 |
Copyright terms: Public domain | W3C validator |