| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymi | GIF version | ||
| Description: Inference associated with nesym 2445. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nesym 2445 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: frec0g 6549 djune 7253 omp1eomlem 7269 fodjum 7321 fodju0 7322 ismkvnex 7330 mkvprop 7333 omniwomnimkv 7342 pr2cv1 7376 3nelsucpw1 7427 xrltnr 9983 nltmnf 9992 xnn0xadd0 10071 fnpr2ob 13381 2lgslem3 15788 2lgslem4 15790 structiedg0val 15849 3dom 16381 2omap 16388 pwle2 16393 nninfalllem1 16404 nninfall 16405 nninfsellemeq 16410 trirec0xor 16443 |
| Copyright terms: Public domain | W3C validator |