Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nesymi | GIF version |
Description: Inference associated with nesym 2381. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
nesymi | ⊢ ¬ 𝐵 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nesymi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | nesym 2381 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ¬ 𝐵 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-ne 2337 |
This theorem is referenced by: frec0g 6365 djune 7043 omp1eomlem 7059 fodjum 7110 fodju0 7111 ismkvnex 7119 mkvprop 7122 omniwomnimkv 7131 3nelsucpw1 7190 xrltnr 9715 nltmnf 9724 xnn0xadd0 9803 pwle2 13888 nninfalllem1 13898 nninfall 13899 nninfsellemeq 13904 trirec0xor 13934 |
Copyright terms: Public domain | W3C validator |