| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymi | GIF version | ||
| Description: Inference associated with nesym 2422. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nesym 2422 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ≠ wne 2377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-ne 2378 |
| This theorem is referenced by: frec0g 6490 djune 7187 omp1eomlem 7203 fodjum 7255 fodju0 7256 ismkvnex 7264 mkvprop 7267 omniwomnimkv 7276 3nelsucpw1 7353 xrltnr 9908 nltmnf 9917 xnn0xadd0 9996 fnpr2ob 13216 2lgslem3 15622 2lgslem4 15624 structiedg0val 15683 2omap 16006 pwle2 16009 nninfalllem1 16019 nninfall 16020 nninfsellemeq 16025 trirec0xor 16058 |
| Copyright terms: Public domain | W3C validator |