| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesymi | GIF version | ||
| Description: Inference associated with nesym 2412. (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesymi.1 | ⊢ 𝐴 ≠ 𝐵 |
| Ref | Expression |
|---|---|
| nesymi | ⊢ ¬ 𝐵 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nesymi.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nesym 2412 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ ¬ 𝐵 = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1364 ≠ wne 2367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: frec0g 6464 djune 7153 omp1eomlem 7169 fodjum 7221 fodju0 7222 ismkvnex 7230 mkvprop 7233 omniwomnimkv 7242 3nelsucpw1 7317 xrltnr 9871 nltmnf 9880 xnn0xadd0 9959 fnpr2ob 13042 2lgslem3 15426 2lgslem4 15428 2omap 15726 pwle2 15729 nninfalllem1 15739 nninfall 15740 nninfsellemeq 15745 trirec0xor 15776 |
| Copyright terms: Public domain | W3C validator |