ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3i GIF version

Theorem necon3i 2384
Description: Contrapositive inference for inequality. (Contributed by NM, 9-Aug-2006.)
Hypothesis
Ref Expression
necon3i.1 (𝐴 = 𝐵𝐶 = 𝐷)
Assertion
Ref Expression
necon3i (𝐶𝐷𝐴𝐵)

Proof of Theorem necon3i
StepHypRef Expression
1 necon3i.1 . 2 (𝐴 = 𝐵𝐶 = 𝐷)
2 id 19 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐵𝐶 = 𝐷))
32necon3d 2380 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐶𝐷𝐴𝐵))
41, 3ax-mp 5 1 (𝐶𝐷𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-ne 2337
This theorem is referenced by:  expnprm  12283  lgsne0  13579
  Copyright terms: Public domain W3C validator