| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nesym | GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 140). (Contributed by BJ, 7-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqcom 2198 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2403 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1364 ≠ wne 2367 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: nesymi 2413 nesymir 2414 0neqopab 5967 fzdifsuc 10156 isprm3 12286 | 
| Copyright terms: Public domain | W3C validator |