ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesym GIF version

Theorem nesym 2422
Description: Characterization of inequality in terms of reversed equality (see bicom 140). (Contributed by BJ, 7-Jul-2018.)
Assertion
Ref Expression
nesym (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)

Proof of Theorem nesym
StepHypRef Expression
1 eqcom 2208 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
21necon3abii 2413 1 (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1373  wne 2377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-ne 2378
This theorem is referenced by:  nesymi  2423  nesymir  2424  0neqopab  5997  fzdifsuc  10210  isprm3  12484
  Copyright terms: Public domain W3C validator