ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesym GIF version

Theorem nesym 2381
Description: Characterization of inequality in terms of reversed equality (see bicom 139). (Contributed by BJ, 7-Jul-2018.)
Assertion
Ref Expression
nesym (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)

Proof of Theorem nesym
StepHypRef Expression
1 eqcom 2167 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
21necon3abii 2372 1 (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by:  nesymi  2382  nesymir  2383  0neqopab  5887  fzdifsuc  10016  isprm3  12050
  Copyright terms: Public domain W3C validator