| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nesym | GIF version | ||
| Description: Characterization of inequality in terms of reversed equality (see bicom 140). (Contributed by BJ, 7-Jul-2018.) |
| Ref | Expression |
|---|---|
| nesym | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2231 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | 1 | necon3abii 2436 | 1 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 = wceq 1395 ≠ wne 2400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: nesymi 2446 nesymir 2447 0neqopab 6055 fzdifsuc 10285 isprm3 12648 |
| Copyright terms: Public domain | W3C validator |