ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nesym GIF version

Theorem nesym 2425
Description: Characterization of inequality in terms of reversed equality (see bicom 140). (Contributed by BJ, 7-Jul-2018.)
Assertion
Ref Expression
nesym (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)

Proof of Theorem nesym
StepHypRef Expression
1 eqcom 2211 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
21necon3abii 2416 1 (𝐴𝐵 ↔ ¬ 𝐵 = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1375  wne 2380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1473  ax-gen 1475  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-cleq 2202  df-ne 2381
This theorem is referenced by:  nesymi  2426  nesymir  2427  0neqopab  6020  fzdifsuc  10245  isprm3  12606
  Copyright terms: Public domain W3C validator