| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nf3and | GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder nf3an 1580. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) | 
| nfand.3 | ⊢ (𝜑 → Ⅎ𝑥𝜃) | 
| Ref | Expression | 
|---|---|
| nf3and | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfand.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 2, 3 | nfand 1582 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) | 
| 5 | nfand.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜃) | |
| 6 | 4, 5 | nfand 1582 | . 2 ⊢ (𝜑 → Ⅎ𝑥((𝜓 ∧ 𝜒) ∧ 𝜃)) | 
| 7 | 1, 6 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |