ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbim1 GIF version

Theorem hbim1 1558
Description: A closed form of hbim 1533. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
hbim1.1 (𝜑 → ∀𝑥𝜑)
hbim1.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
Assertion
Ref Expression
hbim1 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem hbim1
StepHypRef Expression
1 hbim1.2 . . 3 (𝜑 → (𝜓 → ∀𝑥𝜓))
21a2i 11 . 2 ((𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
3 hbim1.1 . . 3 (𝜑 → ∀𝑥𝜑)
4319.21h 1545 . 2 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
52, 4sylibr 133 1 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfim1  1559  sbco2d  1954  sbco2vd  1955
  Copyright terms: Public domain W3C validator