| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbim1 | GIF version | ||
| Description: A closed form of hbim 1559. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hbim1.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| hbim1.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| hbim1 | ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbim1.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 2 | 1 | a2i 11 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) |
| 3 | hbim1.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 3 | 19.21h 1571 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| 5 | 2, 4 | sylibr 134 | 1 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nfim1 1585 sbco2d 1985 sbco2vd 1986 |
| Copyright terms: Public domain | W3C validator |