Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbim1 | GIF version |
Description: A closed form of hbim 1533. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbim1.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
hbim1.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
hbim1 | ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbim1.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
2 | 1 | a2i 11 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) |
3 | hbim1.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
4 | 3 | 19.21h 1545 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
5 | 2, 4 | sylibr 133 | 1 ⊢ ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nfim1 1559 sbco2d 1954 sbco2vd 1955 |
Copyright terms: Public domain | W3C validator |