ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf3an GIF version

Theorem nf3an 1590
Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑𝜓𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfan.1 𝑥𝜑
nfan.2 𝑥𝜓
nfan.3 𝑥𝜒
Assertion
Ref Expression
nf3an 𝑥(𝜑𝜓𝜒)

Proof of Theorem nf3an
StepHypRef Expression
1 df-3an 983 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 nfan.1 . . . 4 𝑥𝜑
3 nfan.2 . . . 4 𝑥𝜓
42, 3nfan 1589 . . 3 𝑥(𝜑𝜓)
5 nfan.3 . . 3 𝑥𝜒
64, 5nfan 1589 . 2 𝑥((𝜑𝜓) ∧ 𝜒)
71, 6nfxfr 1498 1 𝑥(𝜑𝜓𝜒)
Colors of variables: wff set class
Syntax hints:  wa 104  w3a 981  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485
This theorem is referenced by:  vtocl3gaf  2844  mob  2959  nfop  3841  mkvprop  7275  seq3f1olemstep  10681  seq3f1olemp  10682  nfsum1  11742  nfsum  11743  dfgrp3mlem  13505
  Copyright terms: Public domain W3C validator