ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf3an GIF version

Theorem nf3an 1510
Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑𝜓𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfan.1 𝑥𝜑
nfan.2 𝑥𝜓
nfan.3 𝑥𝜒
Assertion
Ref Expression
nf3an 𝑥(𝜑𝜓𝜒)

Proof of Theorem nf3an
StepHypRef Expression
1 df-3an 929 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 nfan.1 . . . 4 𝑥𝜑
3 nfan.2 . . . 4 𝑥𝜓
42, 3nfan 1509 . . 3 𝑥(𝜑𝜓)
5 nfan.3 . . 3 𝑥𝜒
64, 5nfan 1509 . 2 𝑥((𝜑𝜓) ∧ 𝜒)
71, 6nfxfr 1415 1 𝑥(𝜑𝜓𝜒)
Colors of variables: wff set class
Syntax hints:  wa 103  w3a 927  wnf 1401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-gen 1390  ax-4 1452
This theorem depends on definitions:  df-bi 116  df-3an 929  df-nf 1402
This theorem is referenced by:  vtocl3gaf  2702  mob  2811  nfop  3660  mkvprop  6901  seq3f1olemstep  10067  seq3f1olemp  10068  nfsum1  10915  nfsum  10916
  Copyright terms: Public domain W3C validator