Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfxfrd | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1461 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 133 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nf3and 1557 nfbid 1576 nfsbxy 1930 nfsbxyt 1931 nfeud 2030 nfmod 2031 nfeqd 2323 nfeld 2324 nfabdw 2327 nfabd 2328 nfned 2430 nfneld 2439 nfraldw 2498 nfraldxy 2499 nfrexdxy 2500 nfraldya 2501 nfrexdya 2502 nfsbc1d 2967 nfsbcd 2970 nfsbcdw 3079 nfbrd 4027 |
Copyright terms: Public domain | W3C validator |