ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxfrd GIF version

Theorem nfxfrd 1475
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfrd.2 (𝜒 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfxfrd (𝜒 → Ⅎ𝑥𝜑)

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2 (𝜒 → Ⅎ𝑥𝜓)
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1473 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3sylibr 134 1 (𝜒 → Ⅎ𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  nf3and  1569  nfbid  1588  nfsbxy  1942  nfsbxyt  1943  nfeud  2042  nfmod  2043  nfeqd  2334  nfeld  2335  nfabdw  2338  nfabd  2339  nfned  2441  nfneld  2450  nfraldw  2509  nfraldxy  2510  nfrexdxy  2511  nfraldya  2512  nfrexdya  2513  nfsbc1d  2981  nfsbcd  2984  nfsbcdw  3093  nfbrd  4050
  Copyright terms: Public domain W3C validator