![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfxfrd | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1473 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nf3and 1569 nfbid 1588 nfsbxy 1942 nfsbxyt 1943 nfeud 2042 nfmod 2043 nfeqd 2334 nfeld 2335 nfabdw 2338 nfabd 2339 nfned 2441 nfneld 2450 nfraldw 2509 nfraldxy 2510 nfrexdxy 2511 nfraldya 2512 nfrexdya 2513 nfsbc1d 2981 nfsbcd 2984 nfsbcdw 3093 nfbrd 4050 |
Copyright terms: Public domain | W3C validator |