| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfxfrd | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1497 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nf3and 1593 nfbid 1612 nfsbxy 1971 nfsbxyt 1972 nfeud 2071 nfmod 2072 nfeqd 2364 nfeld 2365 nfabdw 2368 nfabd 2369 nfned 2471 nfneld 2480 nfraldw 2539 nfraldxy 2540 nfrexdxy 2541 nfraldya 2542 nfrexdya 2543 nfsbc1d 3017 nfsbcd 3020 nfsbcdw 3129 nfbrd 4094 |
| Copyright terms: Public domain | W3C validator |