![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfxfrd | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1484 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: nf3and 1580 nfbid 1599 nfsbxy 1954 nfsbxyt 1955 nfeud 2054 nfmod 2055 nfeqd 2347 nfeld 2348 nfabdw 2351 nfabd 2352 nfned 2454 nfneld 2463 nfraldw 2522 nfraldxy 2523 nfrexdxy 2524 nfraldya 2525 nfrexdya 2526 nfsbc1d 2994 nfsbcd 2997 nfsbcdw 3106 nfbrd 4063 |
Copyright terms: Public domain | W3C validator |