| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfxfrd | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1487 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nf3and 1583 nfbid 1602 nfsbxy 1961 nfsbxyt 1962 nfeud 2061 nfmod 2062 nfeqd 2354 nfeld 2355 nfabdw 2358 nfabd 2359 nfned 2461 nfneld 2470 nfraldw 2529 nfraldxy 2530 nfrexdxy 2531 nfraldya 2532 nfrexdya 2533 nfsbc1d 3006 nfsbcd 3009 nfsbcdw 3118 nfbrd 4078 |
| Copyright terms: Public domain | W3C validator |