| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfxfrd | GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1519 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 134 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nf3and 1615 nfbid 1634 nfsbxy 1993 nfsbxyt 1994 nfeud 2093 nfmod 2094 nfeqd 2387 nfeld 2388 nfabdw 2391 nfabd 2392 nfned 2494 nfneld 2503 nfraldw 2562 nfraldxy 2563 nfrexdxy 2564 nfraldya 2565 nfrexdya 2566 nfsbc1d 3045 nfsbcd 3048 nfsbcdw 3158 nfbrd 4128 |
| Copyright terms: Public domain | W3C validator |