ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxfrd GIF version

Theorem nfxfrd 1486
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfrd.2 (𝜒 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfxfrd (𝜒 → Ⅎ𝑥𝜑)

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2 (𝜒 → Ⅎ𝑥𝜓)
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1484 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3sylibr 134 1 (𝜒 → Ⅎ𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nf3and  1580  nfbid  1599  nfsbxy  1958  nfsbxyt  1959  nfeud  2058  nfmod  2059  nfeqd  2351  nfeld  2352  nfabdw  2355  nfabd  2356  nfned  2458  nfneld  2467  nfraldw  2526  nfraldxy  2527  nfrexdxy  2528  nfraldya  2529  nfrexdya  2530  nfsbc1d  3002  nfsbcd  3005  nfsbcdw  3114  nfbrd  4074
  Copyright terms: Public domain W3C validator