Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfxfrd | GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1466 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 133 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nf3and 1562 nfbid 1581 nfsbxy 1935 nfsbxyt 1936 nfeud 2035 nfmod 2036 nfeqd 2327 nfeld 2328 nfabdw 2331 nfabd 2332 nfned 2434 nfneld 2443 nfraldw 2502 nfraldxy 2503 nfrexdxy 2504 nfraldya 2505 nfrexdya 2506 nfsbc1d 2971 nfsbcd 2974 nfsbcdw 3083 nfbrd 4034 |
Copyright terms: Public domain | W3C validator |