ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfxfrd GIF version

Theorem nfxfrd 1463
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfrd.2 (𝜒 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfxfrd (𝜒 → Ⅎ𝑥𝜑)

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2 (𝜒 → Ⅎ𝑥𝜓)
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1461 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3sylibr 133 1 (𝜒 → Ⅎ𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nf3and  1557  nfbid  1576  nfsbxy  1930  nfsbxyt  1931  nfeud  2030  nfmod  2031  nfeqd  2323  nfeld  2324  nfabdw  2327  nfabd  2328  nfned  2430  nfneld  2439  nfraldw  2498  nfraldxy  2499  nfrexdxy  2500  nfraldya  2501  nfrexdya  2502  nfsbc1d  2967  nfsbcd  2970  nfsbcdw  3079  nfbrd  4027
  Copyright terms: Public domain W3C validator