Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfia1 | GIF version |
Description: Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfia1 | ⊢ Ⅎ𝑥(∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1529 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | nfa1 1529 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜓 | |
3 | 1, 2 | nfim 1560 | 1 ⊢ Ⅎ𝑥(∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |