Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1527 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
2 | 1 | nfi 1449 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1340 Ⅎwnf 1447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1436 ax-ial 1521 |
This theorem depends on definitions: df-bi 116 df-nf 1448 |
This theorem is referenced by: axc4i 1529 nfnf1 1531 nfa2 1566 nfia1 1567 alexdc 1606 nf2 1655 cbv1h 1733 sbf2 1765 sb4or 1820 nfsbxy 1929 nfsbxyt 1930 sbcomxyyz 1959 sbalyz 1986 dvelimALT 1997 hbe1a 2010 nfeu1 2024 moim 2077 euexex 2098 nfaba1 2312 nfabdw 2325 nfra1 2495 ceqsalg 2750 elrab3t 2877 mo2icl 2901 csbie2t 3089 sbcnestgf 3092 dfss4st 3351 dfnfc2 3802 mpteq12f 4057 copsex2t 4218 ssopab2 4248 alxfr 4434 eunex 4533 mosubopt 4664 fv3 5504 fvmptt 5572 fnoprabg 5935 fiintim 6886 bj-exlimmp 13502 bdsepnft 13621 setindft 13699 strcollnft 13718 |
Copyright terms: Public domain | W3C validator |