| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hba1 1554 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | 1 | nfi 1476 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: axc4i 1556 nfnf1 1558 nfa2 1593 nfia1 1594 alexdc 1633 nf2 1682 cbv1h 1760 sbf2 1792 sb4or 1847 nfsbxy 1961 nfsbxyt 1962 sbcomxyyz 1991 sbalyz 2018 dvelimALT 2029 hbe1a 2042 nfeu1 2056 moim 2109 euexex 2130 nfaba1 2345 nfabdw 2358 nfra1 2528 ceqsalg 2791 elrab3t 2919 mo2icl 2943 csbie2t 3133 sbcnestgf 3136 dfss4st 3396 dfnfc2 3857 mpteq12f 4113 copsex2t 4278 ssopab2 4310 alxfr 4496 eunex 4597 mosubopt 4728 fv3 5581 fvmptt 5653 fnoprabg 6023 fiintim 6992 bj-exlimmp 15415 bdsepnft 15533 setindft 15611 strcollnft 15630 | 
| Copyright terms: Public domain | W3C validator |