ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfa1 GIF version

Theorem nfa1 1587
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfa1 𝑥𝑥𝜑

Proof of Theorem nfa1
StepHypRef Expression
1 hba1 1586 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21nfi 1508 1 𝑥𝑥𝜑
Colors of variables: wff set class
Syntax hints:  wal 1393  wnf 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1495  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507
This theorem is referenced by:  axc4i  1588  nfnf1  1590  nfa2  1625  nfia1  1626  alexdc  1665  nf2  1714  cbv1h  1792  sbf2  1824  sb4or  1879  nfsbxy  1993  nfsbxyt  1994  sbcomxyyz  2023  sbalyz  2050  dvelimALT  2061  hbe1a  2074  nfeu1  2088  moim  2142  euexex  2163  nfaba1  2378  nfabdw  2391  nfra1  2561  ceqsalg  2828  elrab3t  2958  mo2icl  2982  csbie2t  3173  sbcnestgf  3176  dfss4st  3437  dfnfc2  3905  mpteq12f  4163  copsex2t  4330  ssopab2  4363  alxfr  4549  eunex  4650  mosubopt  4781  fv3  5646  fvmptt  5719  fnoprabg  6096  fiintim  7081  bj-exlimmp  16063  bdsepnft  16180  setindft  16258  strcollnft  16277
  Copyright terms: Public domain W3C validator