![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1551 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
2 | 1 | nfi 1473 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1362 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: axc4i 1553 nfnf1 1555 nfa2 1590 nfia1 1591 alexdc 1630 nf2 1679 cbv1h 1757 sbf2 1789 sb4or 1844 nfsbxy 1958 nfsbxyt 1959 sbcomxyyz 1988 sbalyz 2015 dvelimALT 2026 hbe1a 2039 nfeu1 2053 moim 2106 euexex 2127 nfaba1 2342 nfabdw 2355 nfra1 2525 ceqsalg 2788 elrab3t 2915 mo2icl 2939 csbie2t 3129 sbcnestgf 3132 dfss4st 3392 dfnfc2 3853 mpteq12f 4109 copsex2t 4274 ssopab2 4306 alxfr 4492 eunex 4593 mosubopt 4724 fv3 5577 fvmptt 5649 fnoprabg 6019 fiintim 6985 bj-exlimmp 15261 bdsepnft 15379 setindft 15457 strcollnft 15476 |
Copyright terms: Public domain | W3C validator |