![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1540 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
2 | 1 | nfi 1462 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1351 Ⅎwnf 1460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1449 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: axc4i 1542 nfnf1 1544 nfa2 1579 nfia1 1580 alexdc 1619 nf2 1668 cbv1h 1746 sbf2 1778 sb4or 1833 nfsbxy 1942 nfsbxyt 1943 sbcomxyyz 1972 sbalyz 1999 dvelimALT 2010 hbe1a 2023 nfeu1 2037 moim 2090 euexex 2111 nfaba1 2325 nfabdw 2338 nfra1 2508 ceqsalg 2767 elrab3t 2894 mo2icl 2918 csbie2t 3107 sbcnestgf 3110 dfss4st 3370 dfnfc2 3829 mpteq12f 4085 copsex2t 4247 ssopab2 4277 alxfr 4463 eunex 4562 mosubopt 4693 fv3 5540 fvmptt 5610 fnoprabg 5979 fiintim 6931 bj-exlimmp 14709 bdsepnft 14827 setindft 14905 strcollnft 14924 |
Copyright terms: Public domain | W3C validator |