| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1586 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | 1 | nfi 1508 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1393 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: axc4i 1588 nfnf1 1590 nfa2 1625 nfia1 1626 alexdc 1665 nf2 1714 cbv1h 1792 sbf2 1824 sb4or 1879 nfsbxy 1993 nfsbxyt 1994 sbcomxyyz 2023 sbalyz 2050 dvelimALT 2061 hbe1a 2074 nfeu1 2088 moim 2142 euexex 2163 nfaba1 2378 nfabdw 2391 nfra1 2561 ceqsalg 2828 elrab3t 2958 mo2icl 2982 csbie2t 3173 sbcnestgf 3176 dfss4st 3437 dfnfc2 3906 mpteq12f 4164 copsex2t 4331 ssopab2 4364 alxfr 4552 eunex 4653 mosubopt 4784 fv3 5652 fvmptt 5728 fnoprabg 6111 fiintim 7101 bj-exlimmp 16157 bdsepnft 16274 setindft 16352 strcollnft 16371 |
| Copyright terms: Public domain | W3C validator |