Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1 1528 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
2 | 1 | nfi 1450 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: axc4i 1530 nfnf1 1532 nfa2 1567 nfia1 1568 alexdc 1607 nf2 1656 cbv1h 1734 sbf2 1766 sb4or 1821 nfsbxy 1930 nfsbxyt 1931 sbcomxyyz 1960 sbalyz 1987 dvelimALT 1998 hbe1a 2011 nfeu1 2025 moim 2078 euexex 2099 nfaba1 2314 nfabdw 2327 nfra1 2497 ceqsalg 2754 elrab3t 2881 mo2icl 2905 csbie2t 3093 sbcnestgf 3096 dfss4st 3355 dfnfc2 3807 mpteq12f 4062 copsex2t 4223 ssopab2 4253 alxfr 4439 eunex 4538 mosubopt 4669 fv3 5509 fvmptt 5577 fnoprabg 5943 fiintim 6894 bj-exlimmp 13650 bdsepnft 13769 setindft 13847 strcollnft 13866 |
Copyright terms: Public domain | W3C validator |