| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1564 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | 1 | nfi 1486 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: axc4i 1566 nfnf1 1568 nfa2 1603 nfia1 1604 alexdc 1643 nf2 1692 cbv1h 1770 sbf2 1802 sb4or 1857 nfsbxy 1971 nfsbxyt 1972 sbcomxyyz 2001 sbalyz 2028 dvelimALT 2039 hbe1a 2052 nfeu1 2066 moim 2119 euexex 2140 nfaba1 2355 nfabdw 2368 nfra1 2538 ceqsalg 2802 elrab3t 2930 mo2icl 2954 csbie2t 3144 sbcnestgf 3147 dfss4st 3408 dfnfc2 3871 mpteq12f 4129 copsex2t 4294 ssopab2 4327 alxfr 4513 eunex 4614 mosubopt 4745 fv3 5609 fvmptt 5681 fnoprabg 6056 fiintim 7040 bj-exlimmp 15819 bdsepnft 15937 setindft 16015 strcollnft 16034 |
| Copyright terms: Public domain | W3C validator |