| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfa1 | GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfa1 | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1 1554 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | 1 | nfi 1476 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: axc4i 1556 nfnf1 1558 nfa2 1593 nfia1 1594 alexdc 1633 nf2 1682 cbv1h 1760 sbf2 1792 sb4or 1847 nfsbxy 1961 nfsbxyt 1962 sbcomxyyz 1991 sbalyz 2018 dvelimALT 2029 hbe1a 2042 nfeu1 2056 moim 2109 euexex 2130 nfaba1 2345 nfabdw 2358 nfra1 2528 ceqsalg 2791 elrab3t 2919 mo2icl 2943 csbie2t 3133 sbcnestgf 3136 dfss4st 3397 dfnfc2 3858 mpteq12f 4114 copsex2t 4279 ssopab2 4311 alxfr 4497 eunex 4598 mosubopt 4729 fv3 5584 fvmptt 5656 fnoprabg 6027 fiintim 7001 bj-exlimmp 15499 bdsepnft 15617 setindft 15695 strcollnft 15714 |
| Copyright terms: Public domain | W3C validator |