| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfa2 | GIF version | ||
| Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| nfa2 | ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfa1 1555 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfal 1590 | 1 ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: cbv1h 1760 csbie2t 3133 copsex2t 4278 fnoprabg 6023 | 
| Copyright terms: Public domain | W3C validator |