| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfa2 | GIF version | ||
| Description: Lemma 24 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfa2 | ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1565 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | 1 | nfal 1600 | 1 ⊢ Ⅎ𝑥∀𝑦∀𝑥𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: cbv1h 1770 csbie2t 3143 copsex2t 4293 fnoprabg 6053 |
| Copyright terms: Public domain | W3C validator |