| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfim.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfim1 1585 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfnf 1591 nfia1 1594 sb4or 1847 cbval2 1936 nfsbv 1966 nfmo1 2057 mo23 2086 euexex 2130 nfabdw 2358 cbvralfw 2719 cbvralf 2721 vtocl2gf 2826 vtocl3gf 2827 vtoclgaf 2829 vtocl2gaf 2831 vtocl3gaf 2833 rspct 2861 rspc 2862 ralab2 2928 mob 2946 csbhypf 3123 cbvralcsf 3147 dfss2f 3175 elintab 3886 disjiun 4029 nfpo 4337 nfso 4338 nffrfor 4384 frind 4388 nfwe 4391 reusv3 4496 tfis 4620 findes 4640 omsinds 4659 dffun4f 5275 fv3 5584 tz6.12c 5591 fvmptss2 5639 fvmptssdm 5649 fvmptdf 5652 fvmptt 5656 fvmptf 5657 fmptco 5731 dff13f 5820 ovmpos 6050 ov2gf 6051 ovmpodf 6058 ovi3 6064 dfoprab4f 6260 tfri3 6434 dom2lem 6840 findcard2 6959 findcard2s 6960 ac6sfi 6968 nfsup 7067 ismkvnex 7230 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 axpre-suploclemres 7985 uzind4s 9681 indstr 9684 supinfneg 9686 infsupneg 9687 zsupcllemstep 10336 uzsinds 10553 fimaxre2 11409 summodclem2a 11563 fsumsplitf 11590 fproddivapf 11813 fprodsplitf 11814 fprodsplit1f 11816 divalglemeunn 12103 divalglemeuneg 12105 bezoutlemmain 12190 prmind2 12313 exmidunben 12668 cnmptcom 14618 dvmptfsum 15045 lgseisenlem2 15396 elabgft1 15508 elabgf2 15510 bj-rspgt 15516 bj-bdfindes 15679 setindis 15697 bdsetindis 15699 bj-findis 15709 bj-findes 15711 pw1nct 15734 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |