Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfim | GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfim.1 | ⊢ Ⅎ𝑥𝜑 |
nfim.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
4 | 1, 3 | nfim1 1559 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfnf 1565 nfia1 1568 sb4or 1821 cbval2 1909 nfsbv 1935 nfmo1 2026 mo23 2055 euexex 2099 nfabdw 2327 cbvralfw 2683 cbvralf 2685 vtocl2gf 2788 vtocl3gf 2789 vtoclgaf 2791 vtocl2gaf 2793 vtocl3gaf 2795 rspct 2823 rspc 2824 ralab2 2890 mob 2908 csbhypf 3083 cbvralcsf 3107 dfss2f 3133 elintab 3835 disjiun 3977 nfpo 4279 nfso 4280 nffrfor 4326 frind 4330 nfwe 4333 reusv3 4438 tfis 4560 findes 4580 omsinds 4599 dffun4f 5204 fv3 5509 tz6.12c 5516 fvmptss2 5561 fvmptssdm 5570 fvmptdf 5573 fvmptt 5577 fvmptf 5578 fmptco 5651 dff13f 5738 ovmpos 5965 ov2gf 5966 ovmpodf 5973 ovi3 5978 dfoprab4f 6161 tfri3 6335 dom2lem 6738 findcard2 6855 findcard2s 6856 ac6sfi 6864 nfsup 6957 ismkvnex 7119 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 axpre-suploclemres 7842 uzind4s 9528 indstr 9531 supinfneg 9533 infsupneg 9534 uzsinds 10377 fimaxre2 11168 summodclem2a 11322 fsumsplitf 11349 fproddivapf 11572 fprodsplitf 11573 fprodsplit1f 11575 divalglemeunn 11858 divalglemeuneg 11860 zsupcllemstep 11878 bezoutlemmain 11931 prmind2 12052 exmidunben 12359 cnmptcom 12948 elabgft1 13669 elabgf2 13671 bj-rspgt 13677 bj-bdfindes 13841 setindis 13859 bdsetindis 13861 bj-findis 13871 bj-findes 13873 pw1nct 13893 ismkvnnlem 13941 |
Copyright terms: Public domain | W3C validator |