| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfim.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfim1 1593 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: nfnf 1599 nfia1 1602 sb4or 1855 cbval2 1944 nfsbv 1974 nfmo1 2065 mo23 2094 euexex 2138 nfabdw 2366 cbvralfw 2727 cbvralf 2729 vtocl2gf 2834 vtocl3gf 2835 vtoclgaf 2837 vtocl2gaf 2839 vtocl3gaf 2841 rspct 2869 rspc 2870 ralab2 2936 mob 2954 csbhypf 3131 cbvralcsf 3155 dfss2f 3183 elintab 3895 disjiun 4038 nfpo 4346 nfso 4347 nffrfor 4393 frind 4397 nfwe 4400 reusv3 4505 tfis 4629 findes 4649 omsinds 4668 dffun4f 5284 fv3 5593 tz6.12c 5600 fvmptss2 5648 fvmptssdm 5658 fvmptdf 5661 fvmptt 5665 fvmptf 5666 fmptco 5740 dff13f 5829 ovmpos 6059 ov2gf 6060 ovmpodf 6067 ovi3 6073 dfoprab4f 6269 tfri3 6443 dom2lem 6849 findcard2 6968 findcard2s 6969 ac6sfi 6977 nfsup 7076 ismkvnex 7239 exmidfodomrlemr 7292 exmidfodomrlemrALT 7293 axpre-suploclemres 7996 uzind4s 9693 indstr 9696 supinfneg 9698 infsupneg 9699 zsupcllemstep 10353 uzsinds 10570 fimaxre2 11457 summodclem2a 11611 fsumsplitf 11638 fproddivapf 11861 fprodsplitf 11862 fprodsplit1f 11864 divalglemeunn 12151 divalglemeuneg 12153 bezoutlemmain 12238 prmind2 12361 exmidunben 12716 cnmptcom 14688 dvmptfsum 15115 lgseisenlem2 15466 elabgft1 15578 elabgf2 15580 bj-rspgt 15586 bj-bdfindes 15749 setindis 15767 bdsetindis 15769 bj-findis 15779 bj-findes 15781 pw1nct 15804 ismkvnnlem 15855 |
| Copyright terms: Public domain | W3C validator |