| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfim.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfim1 1595 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfnf 1601 nfia1 1604 sb4or 1857 cbval2 1946 nfsbv 1976 nfmo1 2067 mo23 2096 euexex 2140 nfabdw 2368 cbvralfw 2729 cbvralf 2731 vtocl2gf 2837 vtocl3gf 2838 vtoclgaf 2840 vtocl2gaf 2842 vtocl3gaf 2844 rspct 2874 rspc 2875 ralab2 2941 mob 2959 csbhypf 3136 cbvralcsf 3160 dfss2f 3188 elintab 3902 disjiun 4046 nfpo 4356 nfso 4357 nffrfor 4403 frind 4407 nfwe 4410 reusv3 4515 tfis 4639 findes 4659 omsinds 4678 dffun4f 5296 fv3 5612 tz6.12c 5619 fvmptss2 5667 fvmptssdm 5677 fvmptdf 5680 fvmptt 5684 fvmptf 5685 fmptco 5759 dff13f 5852 ovmpos 6082 ov2gf 6083 ovmpodf 6090 ovi3 6096 dfoprab4f 6292 tfri3 6466 dom2lem 6876 findcard2 7001 findcard2s 7002 ac6sfi 7010 nfsup 7109 ismkvnex 7272 exmidfodomrlemr 7326 exmidfodomrlemrALT 7327 axpre-suploclemres 8034 uzind4s 9731 indstr 9734 supinfneg 9736 infsupneg 9737 zsupcllemstep 10394 uzsinds 10611 fimaxre2 11613 summodclem2a 11767 fsumsplitf 11794 fproddivapf 12017 fprodsplitf 12018 fprodsplit1f 12020 divalglemeunn 12307 divalglemeuneg 12309 bezoutlemmain 12394 prmind2 12517 exmidunben 12872 cnmptcom 14845 dvmptfsum 15272 lgseisenlem2 15623 gropd 15721 grstructd2dom 15722 elabgft1 15853 elabgf2 15855 bj-rspgt 15861 bj-bdfindes 16023 setindis 16041 bdsetindis 16043 bj-findis 16053 bj-findes 16055 pw1nct 16081 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |