![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfim | GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfim.1 | ⊢ Ⅎ𝑥𝜑 |
nfim.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
4 | 1, 3 | nfim1 1582 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: nfnf 1588 nfia1 1591 sb4or 1844 cbval2 1933 nfsbv 1963 nfmo1 2054 mo23 2083 euexex 2127 nfabdw 2355 cbvralfw 2716 cbvralf 2718 vtocl2gf 2822 vtocl3gf 2823 vtoclgaf 2825 vtocl2gaf 2827 vtocl3gaf 2829 rspct 2857 rspc 2858 ralab2 2924 mob 2942 csbhypf 3119 cbvralcsf 3143 dfss2f 3170 elintab 3881 disjiun 4024 nfpo 4332 nfso 4333 nffrfor 4379 frind 4383 nfwe 4386 reusv3 4491 tfis 4615 findes 4635 omsinds 4654 dffun4f 5270 fv3 5577 tz6.12c 5584 fvmptss2 5632 fvmptssdm 5642 fvmptdf 5645 fvmptt 5649 fvmptf 5650 fmptco 5724 dff13f 5813 ovmpos 6042 ov2gf 6043 ovmpodf 6050 ovi3 6055 dfoprab4f 6246 tfri3 6420 dom2lem 6826 findcard2 6945 findcard2s 6946 ac6sfi 6954 nfsup 7051 ismkvnex 7214 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 axpre-suploclemres 7961 uzind4s 9655 indstr 9658 supinfneg 9660 infsupneg 9661 uzsinds 10515 fimaxre2 11370 summodclem2a 11524 fsumsplitf 11551 fproddivapf 11774 fprodsplitf 11775 fprodsplit1f 11777 divalglemeunn 12062 divalglemeuneg 12064 zsupcllemstep 12082 bezoutlemmain 12135 prmind2 12258 exmidunben 12583 cnmptcom 14466 lgseisenlem2 15187 elabgft1 15270 elabgf2 15272 bj-rspgt 15278 bj-bdfindes 15441 setindis 15459 bdsetindis 15461 bj-findis 15471 bj-findes 15473 pw1nct 15493 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |