![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfim | GIF version |
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfim.1 | ⊢ Ⅎ𝑥𝜑 |
nfim.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
4 | 1, 3 | nfim1 1582 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 |
This theorem is referenced by: nfnf 1588 nfia1 1591 sb4or 1844 cbval2 1933 nfsbv 1963 nfmo1 2054 mo23 2083 euexex 2127 nfabdw 2355 cbvralfw 2716 cbvralf 2718 vtocl2gf 2823 vtocl3gf 2824 vtoclgaf 2826 vtocl2gaf 2828 vtocl3gaf 2830 rspct 2858 rspc 2859 ralab2 2925 mob 2943 csbhypf 3120 cbvralcsf 3144 dfss2f 3171 elintab 3882 disjiun 4025 nfpo 4333 nfso 4334 nffrfor 4380 frind 4384 nfwe 4387 reusv3 4492 tfis 4616 findes 4636 omsinds 4655 dffun4f 5271 fv3 5578 tz6.12c 5585 fvmptss2 5633 fvmptssdm 5643 fvmptdf 5646 fvmptt 5650 fvmptf 5651 fmptco 5725 dff13f 5814 ovmpos 6043 ov2gf 6044 ovmpodf 6051 ovi3 6057 dfoprab4f 6248 tfri3 6422 dom2lem 6828 findcard2 6947 findcard2s 6948 ac6sfi 6956 nfsup 7053 ismkvnex 7216 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 axpre-suploclemres 7963 uzind4s 9658 indstr 9661 supinfneg 9663 infsupneg 9664 uzsinds 10518 fimaxre2 11373 summodclem2a 11527 fsumsplitf 11554 fproddivapf 11777 fprodsplitf 11778 fprodsplit1f 11780 divalglemeunn 12065 divalglemeuneg 12067 zsupcllemstep 12085 bezoutlemmain 12138 prmind2 12261 exmidunben 12586 cnmptcom 14477 dvmptfsum 14904 lgseisenlem2 15228 elabgft1 15340 elabgf2 15342 bj-rspgt 15348 bj-bdfindes 15511 setindis 15529 bdsetindis 15531 bj-findis 15541 bj-findes 15543 pw1nct 15563 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |