| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfim.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfim1 1593 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 |
| This theorem is referenced by: nfnf 1599 nfia1 1602 sb4or 1855 cbval2 1944 nfsbv 1974 nfmo1 2065 mo23 2094 euexex 2138 nfabdw 2366 cbvralfw 2727 cbvralf 2729 vtocl2gf 2834 vtocl3gf 2835 vtoclgaf 2837 vtocl2gaf 2839 vtocl3gaf 2841 rspct 2869 rspc 2870 ralab2 2936 mob 2954 csbhypf 3131 cbvralcsf 3155 dfss2f 3183 elintab 3895 disjiun 4038 nfpo 4347 nfso 4348 nffrfor 4394 frind 4398 nfwe 4401 reusv3 4506 tfis 4630 findes 4650 omsinds 4669 dffun4f 5286 fv3 5598 tz6.12c 5605 fvmptss2 5653 fvmptssdm 5663 fvmptdf 5666 fvmptt 5670 fvmptf 5671 fmptco 5745 dff13f 5838 ovmpos 6068 ov2gf 6069 ovmpodf 6076 ovi3 6082 dfoprab4f 6278 tfri3 6452 dom2lem 6862 findcard2 6985 findcard2s 6986 ac6sfi 6994 nfsup 7093 ismkvnex 7256 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 axpre-suploclemres 8013 uzind4s 9710 indstr 9713 supinfneg 9715 infsupneg 9716 zsupcllemstep 10370 uzsinds 10587 fimaxre2 11480 summodclem2a 11634 fsumsplitf 11661 fproddivapf 11884 fprodsplitf 11885 fprodsplit1f 11887 divalglemeunn 12174 divalglemeuneg 12176 bezoutlemmain 12261 prmind2 12384 exmidunben 12739 cnmptcom 14712 dvmptfsum 15139 lgseisenlem2 15490 gropd 15586 grstructd2dom 15587 elabgft1 15647 elabgf2 15649 bj-rspgt 15655 bj-bdfindes 15818 setindis 15836 bdsetindis 15838 bj-findis 15848 bj-findes 15850 pw1nct 15873 ismkvnnlem 15924 |
| Copyright terms: Public domain | W3C validator |