| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfim.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfim1 1617 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: nfnf 1623 nfia1 1626 sb4or 1879 cbval2 1968 nfsbv 1998 nfmo1 2089 mo23 2119 euexex 2163 nfabdw 2391 cbvralfw 2754 cbvralf 2756 vtocl2gf 2863 vtocl3gf 2864 vtoclgaf 2866 vtocl2gaf 2868 vtocl3gaf 2870 rspct 2900 rspc 2901 ralab2 2967 mob 2985 reu8nf 3110 csbhypf 3163 cbvralcsf 3187 dfss2f 3215 elintab 3933 disjiun 4077 nfpo 4391 nfso 4392 nffrfor 4438 frind 4442 nfwe 4445 reusv3 4550 tfis 4674 findes 4694 omsinds 4713 dffun4f 5333 fv3 5649 tz6.12c 5656 fvmptss2 5708 fvmptssdm 5718 fvmptdf 5721 fvmptt 5725 fvmptf 5726 fmptco 5800 dff13f 5893 ovmpos 6127 ov2gf 6128 ovmpodf 6135 ovi3 6141 dfoprab4f 6337 tfri3 6511 dom2lem 6921 findcard2 7047 findcard2s 7048 ac6sfi 7056 nfsup 7155 ismkvnex 7318 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 axpre-suploclemres 8084 uzind4s 9781 indstr 9784 supinfneg 9786 infsupneg 9787 zsupcllemstep 10444 uzsinds 10661 fimaxre2 11733 summodclem2a 11887 fsumsplitf 11914 fproddivapf 12137 fprodsplitf 12138 fprodsplit1f 12140 divalglemeunn 12427 divalglemeuneg 12429 bezoutlemmain 12514 prmind2 12637 exmidunben 12992 cnmptcom 14966 dvmptfsum 15393 lgseisenlem2 15744 gropd 15842 grstructd2dom 15843 elabgft1 16100 elabgf2 16102 bj-rspgt 16108 bj-bdfindes 16270 setindis 16288 bdsetindis 16290 bj-findis 16300 bj-findes 16302 pw1nct 16328 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |