| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfim | GIF version | ||
| Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 → 𝜓). (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfim.1 | ⊢ Ⅎ𝑥𝜑 |
| nfim.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfim | ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfim.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfim.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| 4 | 1, 3 | nfim1 1585 | 1 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfnf 1591 nfia1 1594 sb4or 1847 cbval2 1936 nfsbv 1966 nfmo1 2057 mo23 2086 euexex 2130 nfabdw 2358 cbvralfw 2719 cbvralf 2721 vtocl2gf 2826 vtocl3gf 2827 vtoclgaf 2829 vtocl2gaf 2831 vtocl3gaf 2833 rspct 2861 rspc 2862 ralab2 2928 mob 2946 csbhypf 3123 cbvralcsf 3147 dfss2f 3175 elintab 3886 disjiun 4029 nfpo 4337 nfso 4338 nffrfor 4384 frind 4388 nfwe 4391 reusv3 4496 tfis 4620 findes 4640 omsinds 4659 dffun4f 5275 fv3 5584 tz6.12c 5591 fvmptss2 5639 fvmptssdm 5649 fvmptdf 5652 fvmptt 5656 fvmptf 5657 fmptco 5731 dff13f 5820 ovmpos 6050 ov2gf 6051 ovmpodf 6058 ovi3 6064 dfoprab4f 6260 tfri3 6434 dom2lem 6840 findcard2 6959 findcard2s 6960 ac6sfi 6968 nfsup 7067 ismkvnex 7230 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 axpre-suploclemres 7987 uzind4s 9683 indstr 9686 supinfneg 9688 infsupneg 9689 zsupcllemstep 10338 uzsinds 10555 fimaxre2 11411 summodclem2a 11565 fsumsplitf 11592 fproddivapf 11815 fprodsplitf 11816 fprodsplit1f 11818 divalglemeunn 12105 divalglemeuneg 12107 bezoutlemmain 12192 prmind2 12315 exmidunben 12670 cnmptcom 14642 dvmptfsum 15069 lgseisenlem2 15420 elabgft1 15532 elabgf2 15534 bj-rspgt 15540 bj-bdfindes 15703 setindis 15721 bdsetindis 15723 bj-findis 15733 bj-findes 15735 pw1nct 15758 ismkvnnlem 15809 |
| Copyright terms: Public domain | W3C validator |