ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnd GIF version

Theorem nfnd 1650
Description: Deduction associated with nfnt 1649. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypothesis
Ref Expression
nfnd.1 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfnd (𝜑 → Ⅎ𝑥 ¬ 𝜓)

Proof of Theorem nfnd
StepHypRef Expression
1 nfnd.1 . 2 (𝜑 → Ⅎ𝑥𝜓)
2 nfnt 1649 . 2 (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓)
31, 2syl 14 1 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454
This theorem is referenced by:  nfned  2434  nfneld  2443  nfifd  3553
  Copyright terms: Public domain W3C validator