Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnd | GIF version |
Description: Deduction associated with nfnt 1644. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
2 | nfnt 1644 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 |
This theorem is referenced by: nfned 2430 nfneld 2439 nfifd 3547 |
Copyright terms: Public domain | W3C validator |