| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfnd | GIF version | ||
| Description: Deduction associated with nfnt 1670. (Contributed by Mario Carneiro, 24-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfnt 1670 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 | 
| This theorem is referenced by: nfned 2461 nfneld 2470 nfifd 3588 | 
| Copyright terms: Public domain | W3C validator |