| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnd | GIF version | ||
| Description: Deduction associated with nfnt 1670. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfnd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfnd | ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | nfnt 1670 | . 2 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥 ¬ 𝜓) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 |
| This theorem is referenced by: nfned 2461 nfneld 2470 nfifd 3589 |
| Copyright terms: Public domain | W3C validator |