ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfifd GIF version

Theorem nfifd 3552
Description: Deduction version of nfif 3553. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfifd.2 (𝜑 → Ⅎ𝑥𝜓)
nfifd.3 (𝜑𝑥𝐴)
nfifd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfifd (𝜑𝑥if(𝜓, 𝐴, 𝐵))

Proof of Theorem nfifd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-if 3526 . 2 if(𝜓, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦𝐴𝜓) ∨ (𝑦𝐵 ∧ ¬ 𝜓))}
2 nfv 1521 . . 3 𝑦𝜑
3 nfifd.3 . . . . . 6 (𝜑𝑥𝐴)
43nfcrd 2326 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦𝐴)
5 nfifd.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
64, 5nfand 1561 . . . 4 (𝜑 → Ⅎ𝑥(𝑦𝐴𝜓))
7 nfifd.4 . . . . . 6 (𝜑𝑥𝐵)
87nfcrd 2326 . . . . 5 (𝜑 → Ⅎ𝑥 𝑦𝐵)
95nfnd 1650 . . . . 5 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
108, 9nfand 1561 . . . 4 (𝜑 → Ⅎ𝑥(𝑦𝐵 ∧ ¬ 𝜓))
116, 10nford 1560 . . 3 (𝜑 → Ⅎ𝑥((𝑦𝐴𝜓) ∨ (𝑦𝐵 ∧ ¬ 𝜓)))
122, 11nfabd 2332 . 2 (𝜑𝑥{𝑦 ∣ ((𝑦𝐴𝜓) ∨ (𝑦𝐵 ∧ ¬ 𝜓))})
131, 12nfcxfrd 2310 1 (𝜑𝑥if(𝜓, 𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  wnf 1453  wcel 2141  {cab 2156  wnfc 2299  ifcif 3525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-if 3526
This theorem is referenced by:  nfif  3553
  Copyright terms: Public domain W3C validator