| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfifd | GIF version | ||
| Description: Deduction version of nfif 3589. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfifd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| nfifd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) | 
| nfifd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) | 
| Ref | Expression | 
|---|---|
| nfifd | ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-if 3562 | . 2 ⊢ if(𝜓, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))} | |
| 2 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfifd.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfcrd 2353 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | 
| 5 | nfifd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 6 | 4, 5 | nfand 1582 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 7 | nfifd.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 8 | 7 | nfcrd 2353 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) | 
| 9 | 5 | nfnd 1671 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) | 
| 10 | 8, 9 | nfand 1582 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐵 ∧ ¬ 𝜓)) | 
| 11 | 6, 10 | nford 1581 | . . 3 ⊢ (𝜑 → Ⅎ𝑥((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))) | 
| 12 | 2, 11 | nfabd 2359 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))}) | 
| 13 | 1, 12 | nfcxfrd 2337 | 1 ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 Ⅎwnf 1474 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-if 3562 | 
| This theorem is referenced by: nfif 3589 | 
| Copyright terms: Public domain | W3C validator |