| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfifd | GIF version | ||
| Description: Deduction version of nfif 3631. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfifd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfifd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfifd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfifd | ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3603 | . 2 ⊢ if(𝜓, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))} | |
| 2 | nfv 1574 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfifd.3 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfcrd 2386 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 5 | nfifd.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 6 | 4, 5 | nfand 1614 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 7 | nfifd.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 8 | 7 | nfcrd 2386 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐵) |
| 9 | 5 | nfnd 1703 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 10 | 8, 9 | nfand 1614 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐵 ∧ ¬ 𝜓)) |
| 11 | 6, 10 | nford 1613 | . . 3 ⊢ (𝜑 → Ⅎ𝑥((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))) |
| 12 | 2, 11 | nfabd 2392 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜓) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜓))}) |
| 13 | 1, 12 | nfcxfrd 2370 | 1 ⊢ (𝜑 → Ⅎ𝑥if(𝜓, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 Ⅎwnf 1506 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-if 3603 |
| This theorem is referenced by: nfif 3631 |
| Copyright terms: Public domain | W3C validator |