ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfn GIF version

Theorem nfn 1672
Description: Inference associated with nfnt 1670. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfn.1 𝑥𝜑
Assertion
Ref Expression
nfn 𝑥 ¬ 𝜑

Proof of Theorem nfn
StepHypRef Expression
1 nfn.1 . 2 𝑥𝜑
2 nfnt 1670 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
31, 2ax-mp 5 1 𝑥 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wnf 1474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475
This theorem is referenced by:  nfdc  1673  19.32dc  1693  nfnae  1736  mo2n  2073  nfne  2460  nfnel  2469  nfdif  3284  nfpo  4336  0neqopab  5967  nfsup  7058  ismkvnex  7221  mkvprop  7224  zsupcllemstep  10319  oddpwdclemndvds  12339  ismkvnnlem  15696
  Copyright terms: Public domain W3C validator