ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfn GIF version

Theorem nfn 1682
Description: Inference associated with nfnt 1680. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfn.1 𝑥𝜑
Assertion
Ref Expression
nfn 𝑥 ¬ 𝜑

Proof of Theorem nfn
StepHypRef Expression
1 nfn.1 . 2 𝑥𝜑
2 nfnt 1680 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
31, 2ax-mp 5 1 𝑥 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wnf 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485
This theorem is referenced by:  nfdc  1683  19.32dc  1703  nfnae  1746  mo2n  2083  nfne  2470  nfnel  2479  nfdif  3298  nfpo  4356  0neqopab  6003  nfsup  7109  ismkvnex  7272  mkvprop  7275  zsupcllemstep  10394  oddpwdclemndvds  12568  ismkvnnlem  16132
  Copyright terms: Public domain W3C validator