ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfn GIF version

Theorem nfn 1646
Description: Inference associated with nfnt 1644. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfn.1 𝑥𝜑
Assertion
Ref Expression
nfn 𝑥 ¬ 𝜑

Proof of Theorem nfn
StepHypRef Expression
1 nfn.1 . 2 𝑥𝜑
2 nfnt 1644 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
31, 2ax-mp 5 1 𝑥 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449
This theorem is referenced by:  nfdc  1647  19.32dc  1667  nfnae  1710  mo2n  2042  nfne  2429  nfnel  2438  nfdif  3243  nfpo  4279  0neqopab  5887  nfsup  6957  ismkvnex  7119  mkvprop  7122  zsupcllemstep  11878  oddpwdclemndvds  12103  ismkvnnlem  13941
  Copyright terms: Public domain W3C validator