| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfn | GIF version | ||
| Description: Inference associated with nfnt 1680. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1680 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 |
| This theorem is referenced by: nfdc 1683 19.32dc 1703 nfnae 1746 mo2n 2083 nfne 2470 nfnel 2479 nfdif 3298 nfpo 4356 0neqopab 6003 nfsup 7109 ismkvnex 7272 mkvprop 7275 zsupcllemstep 10394 oddpwdclemndvds 12568 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |