ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfn GIF version

Theorem nfn 1680
Description: Inference associated with nfnt 1678. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfn.1 𝑥𝜑
Assertion
Ref Expression
nfn 𝑥 ¬ 𝜑

Proof of Theorem nfn
StepHypRef Expression
1 nfn.1 . 2 𝑥𝜑
2 nfnt 1678 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
31, 2ax-mp 5 1 𝑥 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wnf 1482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1469  ax-gen 1471  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-fal 1378  df-nf 1483
This theorem is referenced by:  nfdc  1681  19.32dc  1701  nfnae  1744  mo2n  2081  nfne  2468  nfnel  2477  nfdif  3293  nfpo  4346  0neqopab  5980  nfsup  7076  ismkvnex  7239  mkvprop  7242  zsupcllemstep  10353  oddpwdclemndvds  12412  ismkvnnlem  15855
  Copyright terms: Public domain W3C validator