Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfn | GIF version |
Description: Inference associated with nfnt 1649. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfn.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfnt 1649 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 |
This theorem is referenced by: nfdc 1652 19.32dc 1672 nfnae 1715 mo2n 2047 nfne 2433 nfnel 2442 nfdif 3248 nfpo 4286 0neqopab 5898 nfsup 6969 ismkvnex 7131 mkvprop 7134 zsupcllemstep 11900 oddpwdclemndvds 12125 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |