| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfn | GIF version | ||
| Description: Inference associated with nfnt 1670. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| nfn.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| nfn | ⊢ Ⅎ𝑥 ¬ 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfn.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfnt 1670 | . 2 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ⅎ𝑥 ¬ 𝜑 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 | 
| This theorem is referenced by: nfdc 1673 19.32dc 1693 nfnae 1736 mo2n 2073 nfne 2460 nfnel 2469 nfdif 3284 nfpo 4336 0neqopab 5967 nfsup 7058 ismkvnex 7221 mkvprop 7224 zsupcllemstep 10319 oddpwdclemndvds 12339 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |