![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfneld | GIF version |
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfneld.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfneld.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfneld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2443 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | nfneld.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfneld.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfeld 2335 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
5 | 4 | nfnd 1657 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝐴 ∈ 𝐵) |
6 | 1, 5 | nfxfrd 1475 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1460 ∈ wcel 2148 Ⅎwnfc 2306 ∉ wnel 2442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-cleq 2170 df-clel 2173 df-nfc 2308 df-nel 2443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |