ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfneld GIF version

Theorem nfneld 2479
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfneld.1 (𝜑𝑥𝐴)
nfneld.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfneld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfneld
StepHypRef Expression
1 df-nel 2472 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
2 nfneld.1 . . . 4 (𝜑𝑥𝐴)
3 nfneld.2 . . . 4 (𝜑𝑥𝐵)
42, 3nfeld 2364 . . 3 (𝜑 → Ⅎ𝑥 𝐴𝐵)
54nfnd 1680 . 2 (𝜑 → Ⅎ𝑥 ¬ 𝐴𝐵)
61, 5nfxfrd 1498 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wnf 1483  wcel 2176  wnfc 2335  wnel 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-cleq 2198  df-clel 2201  df-nfc 2337  df-nel 2472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator