| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfneld | GIF version | ||
| Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfneld.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfneld.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfneld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 2463 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | nfneld.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfneld.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 4 | 2, 3 | nfeld 2355 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| 5 | 4 | nfnd 1671 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝐴 ∈ 𝐵) |
| 6 | 1, 5 | nfxfrd 1489 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ∉ wnel 2462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |