ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfneld GIF version

Theorem nfneld 2503
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfneld.1 (𝜑𝑥𝐴)
nfneld.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfneld (𝜑 → Ⅎ𝑥 𝐴𝐵)

Proof of Theorem nfneld
StepHypRef Expression
1 df-nel 2496 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
2 nfneld.1 . . . 4 (𝜑𝑥𝐴)
3 nfneld.2 . . . 4 (𝜑𝑥𝐵)
42, 3nfeld 2388 . . 3 (𝜑 → Ⅎ𝑥 𝐴𝐵)
54nfnd 1703 . 2 (𝜑 → Ⅎ𝑥 ¬ 𝐴𝐵)
61, 5nfxfrd 1521 1 (𝜑 → Ⅎ𝑥 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wnf 1506  wcel 2200  wnfc 2359  wnel 2495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-cleq 2222  df-clel 2225  df-nfc 2361  df-nel 2496
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator