| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfneld | GIF version | ||
| Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfneld.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfneld.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfneld | ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 2474 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
| 2 | nfneld.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfneld.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 4 | 2, 3 | nfeld 2366 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ 𝐵) |
| 5 | 4 | nfnd 1681 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝐴 ∈ 𝐵) |
| 6 | 1, 5 | nfxfrd 1499 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∉ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1484 ∈ wcel 2178 Ⅎwnfc 2337 ∉ wnel 2473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-cleq 2200 df-clel 2203 df-nfc 2339 df-nel 2474 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |