Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnt | GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) |
Ref | Expression |
---|---|
nfnt | ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 1532 | . 2 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | |
2 | df-nf 1449 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
3 | hbnt 1641 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
4 | 2, 3 | sylbi 120 | . 2 ⊢ (Ⅎ𝑥𝜑 → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) |
5 | 1, 4 | nfd 1511 | 1 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 |
This theorem is referenced by: nfnd 1645 nfn 1646 |
Copyright terms: Public domain | W3C validator |