![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbir | GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 670 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: nnexmid 850 nndc 851 fal 1360 ax-9 1531 nonconne 2359 nemtbir 2436 ru 2963 noel 3428 iun0 3945 0iun 3946 br0 4053 vprc 4137 iin0r 4171 nlim0 4396 snnex 4450 onsucelsucexmid 4531 0nelxp 4656 dm0 4843 iprc 4897 co02 5144 0fv 5552 frec0g 6400 nnsucuniel 6498 1nen2 6863 fidcenumlemrk 6955 djulclb 7056 ismkvnex 7155 pw1ne3 7231 sucpw1nel3 7234 3nsssucpw1 7237 0nnq 7365 0npr 7484 nqprdisj 7545 0ncn 7832 axpre-ltirr 7883 pnfnre 8001 mnfnre 8002 inelr 8543 xrltnr 9781 fzo0 10170 fzouzdisj 10182 inftonninf 10443 hashinfom 10760 3prm 12130 sqrt2irr 12164 ennnfonelem1 12410 bj-nndcALT 14549 bj-vprc 14687 pwle2 14787 exmidsbthrlem 14809 |
Copyright terms: Public domain | W3C validator |