Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbir | GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 660 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnexmid 840 nndc 841 fal 1350 ax-9 1519 nonconne 2348 nemtbir 2425 ru 2950 noel 3413 iun0 3922 0iun 3923 br0 4030 vprc 4114 iin0r 4148 nlim0 4372 snnex 4426 onsucelsucexmid 4507 0nelxp 4632 dm0 4818 iprc 4872 co02 5117 0fv 5521 frec0g 6365 nnsucuniel 6463 1nen2 6827 fidcenumlemrk 6919 djulclb 7020 ismkvnex 7119 pw1ne3 7186 sucpw1nel3 7189 3nsssucpw1 7192 0nnq 7305 0npr 7424 nqprdisj 7485 0ncn 7772 axpre-ltirr 7823 pnfnre 7940 mnfnre 7941 inelr 8482 xrltnr 9715 fzo0 10103 fzouzdisj 10115 inftonninf 10376 hashinfom 10691 3prm 12060 sqrt2irr 12094 ennnfonelem1 12340 bj-nndcALT 13639 bj-vprc 13778 pwle2 13878 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |