Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mtbir | GIF version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | ⊢ ¬ 𝜓 |
mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
mtbir | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bicomi 131 | . 2 ⊢ (𝜓 ↔ 𝜑) |
4 | 1, 3 | mtbi 665 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnexmid 845 nndc 846 fal 1355 ax-9 1524 nonconne 2352 nemtbir 2429 ru 2954 noel 3418 iun0 3929 0iun 3930 br0 4037 vprc 4121 iin0r 4155 nlim0 4379 snnex 4433 onsucelsucexmid 4514 0nelxp 4639 dm0 4825 iprc 4879 co02 5124 0fv 5531 frec0g 6376 nnsucuniel 6474 1nen2 6839 fidcenumlemrk 6931 djulclb 7032 ismkvnex 7131 pw1ne3 7207 sucpw1nel3 7210 3nsssucpw1 7213 0nnq 7326 0npr 7445 nqprdisj 7506 0ncn 7793 axpre-ltirr 7844 pnfnre 7961 mnfnre 7962 inelr 8503 xrltnr 9736 fzo0 10124 fzouzdisj 10136 inftonninf 10397 hashinfom 10712 3prm 12082 sqrt2irr 12116 ennnfonelem1 12362 bj-nndcALT 13793 bj-vprc 13931 pwle2 14031 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |