ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mtbir GIF version

Theorem mtbir 673
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.)
Hypotheses
Ref Expression
mtbir.1 ¬ 𝜓
mtbir.2 (𝜑𝜓)
Assertion
Ref Expression
mtbir ¬ 𝜑

Proof of Theorem mtbir
StepHypRef Expression
1 mtbir.1 . 2 ¬ 𝜓
2 mtbir.2 . . 3 (𝜑𝜓)
32bicomi 132 . 2 (𝜓𝜑)
41, 3mtbi 672 1 ¬ 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nnexmid  852  nndc  853  fal  1380  ax-9  1555  nonconne  2389  nemtbir  2466  ru  3001  noel  3468  iun0  3989  0iun  3990  br0  4099  vprc  4183  iin0r  4220  nlim0  4448  snnex  4502  onsucelsucexmid  4585  0nelxp  4710  dm0  4900  iprc  4955  co02  5204  0fv  5624  frec0g  6495  nnsucuniel  6593  1nen2  6972  fidcenumlemrk  7070  djulclb  7171  ismkvnex  7271  pw1ne3  7357  sucpw1nel3  7360  3nsssucpw1  7363  0nnq  7492  0npr  7611  nqprdisj  7672  0ncn  7959  axpre-ltirr  8010  pnfnre  8129  mnfnre  8130  inelr  8672  xrltnr  9916  fzo0  10307  fzouzdisj  10319  inftonninf  10604  hashinfom  10940  lsw0  11058  3prm  12520  sqrt2irr  12554  ennnfonelem1  12848  bj-nndcALT  15828  bj-vprc  15966  pwle2  16070  exmidsbthrlem  16096
  Copyright terms: Public domain W3C validator