| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbir | GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 672 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnexmid 852 nndc 853 fal 1380 ax-9 1555 nonconne 2389 nemtbir 2466 ru 3001 noel 3468 iun0 3989 0iun 3990 br0 4099 vprc 4183 iin0r 4220 nlim0 4448 snnex 4502 onsucelsucexmid 4585 0nelxp 4710 dm0 4900 iprc 4955 co02 5204 0fv 5624 frec0g 6495 nnsucuniel 6593 1nen2 6972 fidcenumlemrk 7070 djulclb 7171 ismkvnex 7271 pw1ne3 7357 sucpw1nel3 7360 3nsssucpw1 7363 0nnq 7492 0npr 7611 nqprdisj 7672 0ncn 7959 axpre-ltirr 8010 pnfnre 8129 mnfnre 8130 inelr 8672 xrltnr 9916 fzo0 10307 fzouzdisj 10319 inftonninf 10604 hashinfom 10940 lsw0 11058 3prm 12520 sqrt2irr 12554 ennnfonelem1 12848 bj-nndcALT 15828 bj-vprc 15966 pwle2 16070 exmidsbthrlem 16096 |
| Copyright terms: Public domain | W3C validator |