| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbir | GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 674 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnexmid 855 nndc 856 fal 1402 ax-9 1577 nonconne 2412 nemtbir 2489 ru 3027 noel 3495 iun0 4021 0iun 4022 br0 4131 vprc 4215 iin0r 4252 nlim0 4484 snnex 4538 onsucelsucexmid 4621 0nelxp 4746 dm0 4936 iprc 4992 co02 5241 0fv 5664 frec0g 6541 nnsucuniel 6639 1nen2 7018 1ndom2 7022 fidcenumlemrk 7117 djulclb 7218 ismkvnex 7318 pw1ne3 7411 sucpw1nel3 7414 3nsssucpw1 7417 0nnq 7547 0npr 7666 nqprdisj 7727 0ncn 8014 axpre-ltirr 8065 pnfnre 8184 mnfnre 8185 inelr 8727 xrltnr 9971 fzo0 10362 fzouzdisj 10374 inftonninf 10659 hashinfom 10995 lsw0 11114 3prm 12645 sqrt2irr 12679 ennnfonelem1 12973 bj-nndcALT 16080 bj-vprc 16217 pwle2 16323 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |