| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbir | GIF version | ||
| Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
| Ref | Expression |
|---|---|
| mtbir.1 | ⊢ ¬ 𝜓 |
| mtbir.2 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbir.1 | . 2 ⊢ ¬ 𝜓 | |
| 2 | mtbir.2 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bicomi 132 | . 2 ⊢ (𝜓 ↔ 𝜑) |
| 4 | 1, 3 | mtbi 671 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nnexmid 851 nndc 852 fal 1371 ax-9 1545 nonconne 2379 nemtbir 2456 ru 2988 noel 3455 iun0 3974 0iun 3975 br0 4082 vprc 4166 iin0r 4203 nlim0 4430 snnex 4484 onsucelsucexmid 4567 0nelxp 4692 dm0 4881 iprc 4935 co02 5184 0fv 5597 frec0g 6464 nnsucuniel 6562 1nen2 6931 fidcenumlemrk 7029 djulclb 7130 ismkvnex 7230 pw1ne3 7315 sucpw1nel3 7318 3nsssucpw1 7321 0nnq 7450 0npr 7569 nqprdisj 7630 0ncn 7917 axpre-ltirr 7968 pnfnre 8087 mnfnre 8088 inelr 8630 xrltnr 9873 fzo0 10263 fzouzdisj 10275 inftonninf 10553 hashinfom 10889 3prm 12323 sqrt2irr 12357 ennnfonelem1 12651 bj-nndcALT 15512 bj-vprc 15650 pwle2 15753 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |