| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcnnOLD | GIF version | ||
| Description: Obsolete proof of dcnnOLD 850 as of 25-Nov-2023. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dcnnOLD | ⊢ (DECID ¬ 𝜑 ↔ DECID ¬ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotnot 635 | . . . 4 ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) | |
| 2 | 1 | orbi2i 763 | . . 3 ⊢ ((¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑) ↔ (¬ ¬ 𝜑 ∨ ¬ 𝜑)) |
| 3 | orcom 729 | . . 3 ⊢ ((¬ ¬ 𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ((¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑) ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) |
| 5 | df-dc 836 | . 2 ⊢ (DECID ¬ ¬ 𝜑 ↔ (¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑)) | |
| 6 | df-dc 836 | . 2 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
| 7 | 4, 5, 6 | 3bitr4ri 213 | 1 ⊢ (DECID ¬ 𝜑 ↔ DECID ¬ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |