Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcnnOLD | GIF version |
Description: Obsolete proof of dcnnOLD 839 as of 25-Nov-2023. (Contributed by David A. Wheeler, 6-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dcnnOLD | ⊢ (DECID ¬ 𝜑 ↔ DECID ¬ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotnot 624 | . . . 4 ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) | |
2 | 1 | orbi2i 752 | . . 3 ⊢ ((¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑) ↔ (¬ ¬ 𝜑 ∨ ¬ 𝜑)) |
3 | orcom 718 | . . 3 ⊢ ((¬ ¬ 𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ ((¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑) ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) |
5 | df-dc 825 | . 2 ⊢ (DECID ¬ ¬ 𝜑 ↔ (¬ ¬ 𝜑 ∨ ¬ ¬ ¬ 𝜑)) | |
6 | df-dc 825 | . 2 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
7 | 4, 5, 6 | 3bitr4ri 212 | 1 ⊢ (DECID ¬ 𝜑 ↔ DECID ¬ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |